

Improving Error Containment and Reliability of Controller Area Network (CAN) by means of Adequate Star Topologies

Manuel Barranco

Julián Proenza

Luis Almeida

CAN (Controller Area Network) protocol

- Field-bus communication protocol mainly used in distributed control systems.
- Extensively used in practice for over 15 years in:
 - ✓ In-vehicle and intra-building communication.
 - ✓ Factory automation.
 - ✓ Some space applications.
- Main characteristics
 - ✓ Low cost.
 - ✓ Interesting real-time features.
 - √ Good dependability.

CAN protocol - Basic properties

Simplex bus topology.

CAN protocol - Basic properties

 Dominant / recessive transmission: the medium implements a wired-AND function.

Dominant bits overwrite recessive bits

CAN protocol - Basic properties

• In-bit response: nodes have a quasi-simultaneous view of every bit in the channel.

CAN protocol - Basic properties

Fault-treatment mechanisms.

CAN protocol - Basic properties

Fault-treatment mechanisms.

Node shuts down when it diagnoses itself as being permanently faulty

CAN protocol – Scarce error containment

A bus has scarce error-containment mechanisms.

If the node does not shut down when faulty, it cannot prevent the propagation of errors

Formalization of the problem

- K-severe failure of communication.
 - ✓ Less than N-K nodes of an ensemble of N nodes can communicate with each other.
- Point of k-severe failure of communication.
 - ✓ Point whose failure provokes a k-severe failure of communication.
 - ✓ It includes the concept of single point of failure.
 - ✓ A bus has multiple points of k-severe failure.

Formalization of the problem – fault model

 Stuck-at-dominant fault (node or medium).

 Stuck-at-recessive fault (medium).

 Bit-flipping fault (node or medium).

Medium partition fault.

The objective

 To provide communication infrastructures that improve error containment and reliability of CAN.

 To keep compatibility with CAN: to inherit its good properties and to use CAN-COTS hardware and software.

The solution: adequate star topologies

no medium partitions no spatial proximity failures

no common-mode failures

The solution: adequate star topologies

- An adequate star topology must provide.
 - ✓ Error containment of stuck-at and bit-flipping faults.
 - ✓ Tolerance of stuck-at and bit-flipping faults.
 - ✓ Full compatibility with CAN.

The solution: adequate star topologies

- An adequate star topology must provide.
 - ✓ Error containment of stuck-at and bit-flipping faults.
 - ✓ Tolerance of stuck-at and bit-flipping faults.
 - ✓ Full compatibility with CAN.

This is what we have done

Outline

CANcentrate.

Error containment

ReCANcentrate.

Error containment and reliability

Conclusions.

Future work.

Main objective: error containment

- To prevent that a single fault in a network component causes a severe failure of communication in a CAN network.
 - ✓ One fault just prevents a maximum of one node from communicating.

Architecture overview

Hub basic architecture

Coupling schema

Prototype implementation

Prototype implementation - Tests

- Functional tests.
 - ✓ Short fault isolation delays [25, 300]us at 690 kbs.
- Performance tests.
 - ✓ Inverse relationship in CAN between the bit rate and the network length: at 690 kbs the achieved a star diameter was 41 meters (68 meter in CAN).
 - ✓ Extra delay introduced by the hub transceivers. It does not visibly depend on the number of ports.

Dependability evaluation

- A star includes more hardware than a bus: the probability of suffering from a fault is higher in a star.
 - ✓ CANcentrate reduces reliability.
 - ✓ But CANcentrate can improve error containment.
 - © Suitable for system that can assume that up to K of N nodes cannot communicate.

Dependability evaluation – Modelling framework

- Dependability comparison in the presence of permanent hardware faults.
- CAN and CANcentrate modelled by means of: Stochastic Activity Networks (SANs): a generalization of Stochastic Petri Nets.
- Realistic values for dependability parameters such as failure rates and error-detection coverages.

Dependability evaluation – Assumptions

- Results are lower bounds to the dependability of CANcentrate.
 - ✓ Modeling assumptions that favor CAN, e.g. we did not consider spatial proximity failures.

Reliability comparison vs number of nodes

PNS comparison vs number of nodes

Main disadvantages

- CANcentrate slightly reduces the reliability.
- It still has one severe point of failure: the hub.

Outline

CANcentrate.

Conclusions.

Future work.

Main objectives: error containment and reliability

- To detinitively eliminate all points of severe failure in a CAN network: tolerate one hub failure.
- To tolerate link failures.

The solution: a replicated star

A replication of CANcentrate

- In particular: we replicated CANcentrate.
 - ✓ We take advantage of the error-containment properties already achieved by CANcentrate.
 - ✓ We still keep the fully compatibility with CAN.

Architecture overview

Two coupled hubs.

Basic functionality

 Hubs behave like one: they send the same bit stream bit by bit to the nodes.

Basic functionality

Basic functionality

Basic functionality

Basic functionality

Flexible configuration to reduce cabling costs.

Basic functionality

Error containment of link and node faults.

Basic functionality

Tolerance to link faults.

Basic functionality

Tolerance to interlink faults.

Basic functionality

• Tolerance to hub faults.

Prototype implementation

Prototype implementation - Tests

- Functional tests.
 - ✓ Similar results as in CANcentrate.
- Performance tests.
 - ✓ At 625 kbs, the maximum achievable star diameter was 25 meters (79 meters in CAN).

Dependability evaluation

- ReCANcentrate modeled using the same formalisms and tools as for CANcentrate.
- Results are lower bounds to the dependability of ReCANcentrate.

Reliability comparison vs number of nodes

PNS comparison vs number of nodes

Conclusions

- CANcentrate demonstrates that it is possible to improve error containment of CAN by means of a CAN-compliant simplex star topology.
- ReCANcentrate demonstrates that it is possible to improve both reliability and error containmet of CAN by means of a replicated star topology.

Future work

- Design and implementation of further fault treatment mechanisms at hubs: babbling idiot, masquerading faults, etc.
- Design and implementation of stars that use only one CAN cable per link.
- Performability evaluation of (Re)CANcentrate in the presence of transient faults.
- Implementation and formal verification of a driver for managing the replicated media in ReCANcentrate.

Improving Error Containment and Reliability of Controller Area Network (CAN) by means of Adequate Star Topologies

Manuel Barranco

Julián Proenza

Luis Almeida