Server-based Traffic Scheduling in Ethernet Switches

Rui Santos, rsantos@ua.pt

1

Outline

- Motivation
- Server-based traffic scheduling
 - Implementation architectures
 - Online schedulability analysis algorithm
 - Application in FTT-enabled Ethernet Switch
- Conclusions

Motivation

- Component-oriented design techniques are increasingly used in the development of Networked Embedded Systems (NES), as a strategy to:
 - Handle the increasing system complexity
 - Allow efficient resource sharing

- Flexible, adaptable and deterministic
- Able to mirror the composability

Motivation

- Switched Ethernet and derivative protocols are becoming important technologies in NES due to the:
 - High bandwidth, low cost, hardware availability,...
 - Real-time Ethernet (RTE) protocols provide QoS guarantees
- But, in general these Real-Time Ethernet protocols use static approaches for the real-time traffic and they have difficulties to support:
 - Heterogeneous nodes, information and requirements
 - Dynamic environments
 - Joining/departing stream and nodes
 - Hierarchical composition of real-time channels

Aveiro

Motivation

- Summing up:
 - The lack of efficient support to hierarchical composition in most of RTE protocols prevents its use in complex NES with component-oriented design techniques or otherwise, it limits the use of these component-oriented techniques in NES.

Solution

- We propose a flexible multi-level hierarchical serverbased scheduling framework for switched Ethernet that allows:
 - To divide, subdivide and so on the network bandwidth in a hierarchical way, creating virtual channels
 - Composability in the time domain
 - Real-time guarantees and differentiated QoS (using admission control)
 - Reconfiguration and adaptation of channels for varying flows
 - Assures temporal isolation among channels

Architectures

Servers Implementation

- We have been presented and discuss two different server implementation options for the FTT-enabled
 Ethernet switch:
 - in **software**
 - Servers scheduled within in the Master Module
 - in hardware
 - Server scheduling in the Switching Module

 These options are compared in terms of **flexibility** and **responsiveness**

8/10/2010

Comparison

Servers implemented in software – Master Module

- Higher flexibility
 - Arbitrary number and type of servers (servers are SW entities)
 - Scheduling complexity can be large
- The server latency is relatively large and depends on the EC duration
- Server implemented in Hardware Switching Module
- Higher reactivity
- S Lower flexibility
- Complex server scheduling methods can require a significant amount of hardware resources

Aveiro

Experimental Validation (correctness of the servers)

- Elementary Cycle = 1ms; Asynchronous Window = 42%
- SS1, SS2 sporadic servers with C=3200B and T=1ms
- BS background server uses the remaining bandwidth

- Video sent by SS1 and BS
 - Peak load = 21.9Mbps
- UDP traffic by SS2
 - Average load = 99.9
 Mbps

Experimental Results (correctness of the servers-software implementation)

Sporadic Server 1

Sporadic Server 1

Background Server

Background Server

10

10

10

20

20

20

Bandwidth (Mb/s)

Packet Drop Bandwidth (s) (Mb/s) Ba

30

20

20

-20

30

20

10

0 L 0

20

'n

Experimental Results (correctness of the servers-hardware implementation)

Sporadic Server 1

30

20

Experimental Results (assess the reactivity)

Online Schedulability Analysis

Model Definition

Servers:

$$Srv_{y_x} = (C_{y_x}, T_{y_x}, Mmax_{y_x}, Mmin_{y_x}, P_{y_x}, RT_{y_x})$$

Streams:

 $AS_{y_x} = (C_{y_x}, Tmit_{y_x}, Mmax_{y_x}, Mmin_{y_x}, P_{y_x}, RT_{y_x})$

Model Definition

- The application of this model to a switched Ethernet (FTT) architecture has to assume some restrictions:
 - The preemption of packets that are in transmission process is not allowed
 High priority

 Overruns are not allowed in a server component, in order to guarantee strict temporal isolation among servers. Therefore idle time (iit) is inserted in the end of each server

Schedulability Analysis Algorithm

- The schedulability analysis algorithm is used to guarantee that online changes in the hierarchy do not affect the real-time guarantees of running streams.
- The proposed schedulability analysis is based on response time of the messages inside the servers and it is performed in two phases:
 - First phase verifies the impact of the requested change in the maximum iit in each branch
 - Second phase verifies the schedulability analysis of each component from the top to the bottom of the hierarchy

Schedulability Analysis Algorithm (first phase)

 From the bottom to the top, this phase aims to find the Mmax (maximum iit) and Mmin packet transmission time in each branch

Γ1₁ **Mmax = 90** server Mmax = 80Mmax = 90**Γ2**₂ **Γ2**₁ server server Mmax = 80 **Mmax = 90** Mmax = 45**Γ4**₁ **Γ3**₁ **Г3**₂ stream server server Mmax = 50Mmax = 90Mmax = 45 **Γ4**₁ **Γ4**₁ **Г**4₁ stream stream stream 8/10/2010 Aveiro

Schedulability Analysis Algorithm (second phase)

- From the top to the bottom, this phase verifies the schedulability of each component and consequently the schedulability of all system
 - For that, a schedulability analysis under FPS is used

$$\forall \Gamma_{y_x} \exists t : 0 < t \le T_{y_x}, rbf_{y_x}(t) \le sbf_{P_{y_x}}(t)$$

$$RT_{y_x} = \text{shortest } t^* : rbf_{y_x}(t^*) = sbf_{P_{y_x}}(t^*)$$

- *rbf(t)* quantifies the maximum load submitted to the parent component P
- sbf(t) computes the minimum bandwidth supply provided by the parent component to its children

Schedulability Analysis Algorithm (second phase)

Supply Bound Function

8/10/2010

- Used the Explicit Deadline Periodic (EDP) resource model [A. Easwaran et al, RTSS 2007] that generalizes the periodic resource model for compositional analysis of HSFs
 - Π Period (period of the server component)
 - Θ Units of the resource (capacity of the server component Mmax)
 - <u>A</u> Time units during, which the resource units are available (response time of <u>the parent server component)</u>
 <u>.</u>
 <u>.</u>
 <u>.</u>
 <u>.
 </u>
 <u>.
 </u></u></u></u></u></u></u></u></u>

20

$$sbf_{\Gamma_{y_x}} = \begin{cases} b\Theta_{y_x} + \max\{0, t - a - b\Pi_{y_x}\}, t \ge \Delta_{y_x} - \Theta_{y_x} \\ 0, \text{ otherwise} \end{cases}$$

$$a = \prod_{y_x} + \Delta_{y_x} - 2\Theta_{y_x} \text{ and} \\ b = \lfloor (t - (\Delta_{y_x} - \Theta_{y_x})) / \Pi_{y_x} \rfloor$$

$$a = \prod_{y_x} + \Delta_{y_x} - 2\Theta_{y_x} \text{ and} \\ b = \lfloor (t - (\Delta_{y_x} - \Theta_{y_x})) / \Pi_{y_x} \rfloor$$

Aveiro

Schedulability Analysis Algorithm (second phase)

Requested Bound Function

8/10/2010

Aveiro

Schedulability Analysis Algorithm (second phase)

Application

Application in FTT-enabled Ethernet Switch

- The integration with the FTT-enabled Ethernet switch allows:
 - Efficient management of the asynchronous window
 - Highly configurable RT channels (different BW and latency)
 - RT channels can be allocated to nodes or applications inside the nodes
 - RT channels can be created by third party nodes

Conclusions and Future Work

- Component-based design is a powerful design paradigm to address the growing complexity of embedded applications and networks
- We are addressing the multi-level hierarchical server scheduling within Ethernet switches, namely FTTenabled Ethernet switch
- A schedulability analysis that allows verifying whether a given composition of server is schedulable have been developed.
- As future work we propose to evaluate, test and compare this approach with others similar

8/10/2010

Aveiro

Thank You

8/10/2010