
Implementing Server-Based Communication within Ethernet Switches

R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira
DETI / IEETA

Universidade de Aveiro, Portugal
{rsantos,alexandrevieira,marau,pbrp,arnaldo}@ua.pt

Luis Almeida
IEETA - DEEC / University of Porto

4200-465 Porto, Portugal
lda@fe.up.pt

Thomas Nolte
MRTC / Mälardalen University

Vasteras, Sweden
thomas.nolte@mdh.se

Abstract

Server-based architectures have generated recently a
considerable interest. They provide an effective means to
support composability, i.e., the integration of diverse com-
ponents while guaranteeing the required service-levels to
each one. While common in CPU scheduling, the support
for server-oriented architectures in the domain of real-time
communication protocols is more limited due to distribu-
tion and specific medium access control and queues man-
agement policies within network controllers, network de-
vices and protocol stacks. Consequently, server-based traf-
fic scheduling is either not supported or supported in a lim-
ited and inefficient way, e.g., only basic servers, no hierar-
chical composition, static configuration. To overcome such
limitations, the authors proposed recently the Server-SE
protocol, which supports unconstrained server-based traffic
scheduling over switched Ethernet, using the FTT-SE proto-
col and common off-the-shelf (COTS) switches as platform.
This paper extends such work by bringing the servers in-
side a customized Ethernet switch. This option provides a
high level of determinism, robustness and flexibility, being
particularly suited to open systems as servers can easily be
added, composed, adapted and removed at run-time. The
proposal is validated with a prototype implementation and
experimental results that show its effectiveness in enforcing
correct resource reservations.

1 Introduction

The development of complex embedded systems greatly
benefits from composability, i.e., the capability of integrat-
ing diverse components in a system in which they share
resources while satisfying their individual service require-

ments and enforcing mutual temporal isolation. Server-
oriented architectures are recognized as an effective means
to enable such kind of resource sharing [1] and they can be
the basis for resource partioning and virtualization, support-
ing the separation between applications software architec-
ture and the hardware platform on which they will execute.
Such separation has the potential to bring significant cost
reductions at the system level and is currently the object
of active frameworks such as AUTOSAR in the automotive
domain, IMA in avionics or IEC61499 in industrial automa-
tion. These frameworks are generally distributed and thus
require an appropriate support to distributed partitions that
naturally include network segments.

The current support for network partitions suffers from
limitations imposed by specific medium access control and
queues management policies within network controllers,
network devices and protocol stacks that do not allow ef-
ficient server-based scheduling policies as those developed
for CPU scheduling. Moreover, network partitions are typ-
ically static, as in TDMA-based approaches, and do not
adapt to variations in number of active components in the
system or in their requirements. Finally, the respect for net-
work partitions is frequently delegated to the end nodes that
must execute a specific layer on top of the general network
interface, typically a traffic shaper, which is a limitation for
the integration of legacy systems and other general purpose
systems that do not originally include such layer. More-
over, even in the cases in which such layer can be effec-
tively deployed, the proper operation of the system requires
the compliance of all system components to a correct tem-
poral behavior.

Therefore, in order to support network partitions that are
not limited by the underlying protocol or network inter-
faces/devices the authors proposed previously the Server-
SE protocol [2], integrating the FTT-SE [3] and Server-

1



CAN [4] protocols, the former providing a master/slave ar-
chitecture that supports operational flexibility and the lat-
ter providing an integrated server-based traffic scheduling
paradigm. Server-SE provides a seamless integration of
real-time and non-real-time services, with strict timeliness
guarantees to the first class. Arbitrary server scheduling
policies are supported including their hierarchical compo-
sition. Furthermore, the servers properties can be changed
dynamically, e.g., to deal with changes in the application
requirements or environment, without compromising the
timeliness of the real-time services. However, the imple-
mentation over FTT-SE still requires that a specific soft-
ware layer be installed above the network device driver in
all nodes to control transmissions adequately.

Recently, the FTT-SE framework was complemented
with a costumized Ethernet switch [5] that integrates the
FTT master functionality and is capable of traffic classifi-
cation and policing at the input ports. This latter feature
allows confining the incoming traffic to reconfigurable time
windows, whichever its type and arrival pattern. This ca-
pability is not present in current real-time Ethernet (RTE)
protocols and is particularly well suited for supporting open
distributed real-time systems. Note that legacy or general
purpose systems can now be connected to the network with-
out requiring any specific software adaptation layer and
their traffic is transparently confined to windows that are
disjoint with respect to other sources of time-sensitive traf-
fic, providing mutual temporal isolation.

In this work, the authors propose exploiting the new
FTT-enhanced switch to deploy the Server-SE protocol,
supporting the servers directly on the switch hardware. By
doing this, the protocol is now able to provide network par-
titions, or virtual channels, that are flexible with respect to
their hierarchical composition, dynamic adaptation and re-
configuration and server scheduling policy while being ro-
bust to arbitrary traffic arrival patterns.

These features are a significant contribution to the field
of RTE protocols, which are extensively used in complex
embedded and/or industrial systems, where composability
frameworks are particularly useful. Therefore the paper is
organized as follows: Section 2 presents a brief discussion
about the server-class services supported by some relevant
RTE protocols; Section 3 revisits the basics of the FTT-
Enabled Switch and its FPGA-based implementation; Sec-
tion 4 presents the core of the proposal, detailing the inte-
gration of server-based traffic scheduling into the switch;
Section 5 presents a prototype implementation, showing the
plausibility of the proposal and its capability to guarantee-
ing the correct server temporal behavior, even in the pres-
ence of interference with arbitrary arrival patterns and load
variations. Finally, Section 6 presents the conclusions.

2 Server-based traffic scheduling

In the networking domain, probably for historical rea-
sons, the names given to servers are different from those
used in CPU scheduling. For example, a common server
used in networking is the leaky bucket. This is a specific
kind of a general server category called traffic shapers [6],
which purpose is to limit the amount of traffic that a node
can submit to the network within a given time window,
bounding the node burstiness. These servers use techniques
similar to those used by CPU servers, based on capacity
that is eventually replenished. Many different replenish-
ment policies are also possible, being the periodic replen-
ishment as with the Polling Server (PS) or the Deferrable
Server (DS), the most common ones. However, it is hard
to categorize these network servers similarly to the CPU
servers because networks seldom use clear fixed or dynamic
priority traffic management schemes. In fact, there is a
large variability of Medium Access Control (MAC) proto-
cols, some of them mixing different schemes such as round-
robin scheduling, first-come-first-served, multiple priority
queues, etc.

Particularly regarding RTE protocols, some very lim-
ited forms of server-based traffic handling can be found.
Some protocols enforce periodic communication cycles
with reserved windows for different traffic classes (e.g.
PROFINET-IRT [7], TTEthernet [8] and Ethernet Power-
link [9]). This is a trivial composition of several PS that
hardly supports an efficient use of the network bandwidth.
Other protocols, such as [6], implement traffic shapers in
the end nodes that behave similarly to a DS. However, due
to infrastructural limitations, none of these protocols sup-
ports arbitrary server policies nor their hierarchical compo-
sition and dynamic adaptation or creation/removal. These
features are provided by the Server-SE implementation pro-
posed in this work, and are inherited from the new FTT-
enabled Ethernet switch.

3 FTT-enabled Ethernet switch

3.1 Brief overview

The FTT-enabled switch is based on the Flexible Time-
Triggered (FTT) paradigm with the FTT master included in-
side the switch (Master Module in Figure 1). The FTT pro-
tocol defines three traffic classes: 1) periodic real-time mes-
sages activated by the master (referred to as synchronous
since their transmission is synchronized with the periodic
traffic scheduler); 2) aperiodic or sporadic real-time traf-
fic autonomously activated by the application within each
node and 3) non real-time traffic. Classes 2 and 3 are
referred to as asynchronous. The synchronous and asyn-
chronous traffic are transmitted within separate windows

2



with the former typically having priority over the latter. The
non real-time traffic is scheduled in the background, within
the asynchronous window. For the synchronous traffic, a
master/multi-slave transmission control technique is used,
according to which a master addresses several slaves with
a single poll message, considerably alleviating the proto-
col overhead when compared to the conventional master-
slave techniques. The communication is organized in fixed
duration slots called Elementary Cycles (ECs). Each EC
starts with one poll message sent by the master, called Trig-
ger Message (TM). The TM contains the schedule for that
particular EC. Only the messages that fit within an EC are
scheduled by the master, thus memory overflows inside the
switch are completely avoided for such kind of traffic.

Figure 1. FTT-enabled Ethernet switch

Integrating the FTT master in the switch preserves most
FTT attributes while obtaining important gains in the fol-
lowing key aspects:

• A simplification in handing the asynchronous traffic
that is now autonomously triggered by the nodes in-
stead of being polled by the master node, while main-
taining aggregated or per-stream temporal isolation;

• An increase in the system integrity since unauthorized
real-time transmissions can be readily blocked at the
switch input ports, thus not interfering with the rest of
the system.

• Seamless integration of non-FTT-compliant nodes
without jeopardizing the real-time services.

3.2 Switch architecture

The functional architecture of the FTT-enabled Ethernet
switch has been presented and discussed in earlier work [5].
It is basically formed by four main blocks, the master itself,

which includes the System Requirements Data Base, the ad-
mission controller, the synchronous scheduler and Quality
of Service (QoS) manager, the input blocks that classify,
validate and filter the ingress traffic, the global memory
pool that holds the messages of each class in independent
sections, and the output blocks that include three pointer
queues, one for each traffic class, and assure the jitter-free
transmission of the TM in each EC.

This architecture allows us maintaining a tight control on
the traffic that enters the switch, including enforcing an ad-
equate timing behavior and temporal isolation among traf-
fic classes, whichever is the traffic arrival pattern. There-
fore, nodes producing NRT or asynchronous traffic can use
the switch transparently, as if it was a standard Ethernet
switch, without needing any modification of the node soft-
ware. This is particularly relevant to cope with legacy ap-
plications that were not designed to use the synchronous
services. The former traffic will not interfere with the latter
and both will not interfere with the synchronous traffic that
might be flowing through the switch. This grants a high
flexibility to the proposed solution for real-time commu-
nication, which efficiently combines those heterogeneous
traffic classes with mutual temporal isolation. An appropri-
ate FTT network driver is just required for the synchronous
communication services and for setting up asynchronous
channels dynamically.

4 Integrating server-based scheduling in the
FTT-enabled switch

In [2] the authors addressed the integration of server-
based traffic scheduling with the FTT-SE protocol and pro-
posed Server-SE. Despite supporting arbitrary servers, as
well as their hierarchical composition and dynamic adapta-
tion, creation and removal, the Server-SE protocol is based
on COTS Ethernet switches and thus depends on the exclu-
sive presence of FTT-compliant nodes in the network seg-
ment, otherwise the real-time properties are compromised.
This limitation is now overcome by using the FTT-enabled
switch to support Server-SE, exploiting its capability to
classify, confine and validate traffic at the switch ingress
ports. The protocol then provides the server hierarchy de-
picted in Figure 2.

At the top level the FTT EC structure uses two disjoint
windows (SW and AW ), that fill in the whole Elementary
Cycle (EC), to handle the two main traffic classes, i.e., syn-
chronous and asynchronous. These windows appear once
in each EC (period E) and have a bounded size (LSW and
LAW , respectively), specified in the FTT configuration.
Several deployment alternatives can be considered. Typi-
cally, the synchronous window is a polling server with pe-
riod TSW = E and capacity CSW = LSW while the asyn-
chronous window is a deferrable server with lower priority

3



Figure 2. Hierarchy of servers

than the former but reclaiming the space it leaves unused in
each EC. Its period is TAW = E and its capacity CAW is
inheritied from the EC after having removed the capacity of
the synchronous server and other protocol overheads lead-
ing to a minimum of CAW = LAW = E − LSW − δ.
A less efficient alternative but simpler to implement, and
the one used in the prototype described later on, is to de-
ploy both windows as two polling servers with fixed ca-
pacity, scheduled in a TDMA fashion. The bandwidth of
the synchronous server is USW = CSW

TSW
= LSW

E and of
the asynchronous one UAW = CAW

TAW
= E−LSW−δ

E =
1− Uδ − USW . Note that E and LSW , and also δ to some
extent, are FTT configuration parameters that can be tuned
to suit the global application needs in terms of synchronous
and asynchronous requirements. Particularly, LSW can
take any value from 0 to E − δ controlling the bandwidth
distribution between the two servers. In general, a lower
LSW smoothes the synchronous load across ECs and im-
proves the responsiveness to asynchronous requests.

The second level of the hierarchy manages the sporadic
and NRT traffic, the former having real-time requirements
and thus being always scheduled before the latter that is
handled with a background server. Thus, at this level, the
sporadic window inherits the capacity and bandwidth of its
parent server (CSPW = CAW ; USPW = UAW ) while the
NRT server inherits the remaining capacity left free in the
EC.

The third level of the hierarchy is where additional
application-specific servers can be plugged-in, constituting
virtual channels. These servers can be implemented with ar-
bitrary scheduling policies without preemption at the packet
level. The sole constraints are that the base time granularity
for periods, deadlines and offsets is E and their aggregated
bandwidth cannot exceed USPW .

4.1 Provided services

The server allocation follows a similar procedure to the
one defined for the Server-SE implementation. All nodes

have to negotiate with the switch the creation of adequate
servers in order to handle specific types of traffic. The node
requests are issued via specific FTT control messages, while
the TM, which is sent by the switch, conveys the request
replies. The negotiation of the server parameters, i.e, the
parameters of the desired virtual channel, is based on ad-
missible ranges of QoS. The switch implements an admis-
sion control module assuring that, at any time, the switch
has enough resources to satisfy the real-time requirements
of the traffic that is conveyed within the negotiated chan-
nels. During the communication process, the nodes can
renegotiate the QoS parameters of any channel using the
same service as for setting up channels. When a node stops
using a channel it should delete the associated server, free-
ing up the communication resources, which eventually may
be assigned to other active channels or to accommodate new
ones.

The traffic classification and temporal confinement is
carried out, transparently, by the switch. Therefore, legacy
applications can seamlessly communicate through a virtual
channel with QoS guarantees, provided that the channel is
properly set-up. This may be achieved either by a third-
party entity, e.g. another process in the same or any other
node, or by manual switch pre-configuration. Additionally,
legacy applications can also seamlessly communicate us-
ing the NRT background server implemented in each node.
This server is created by default and does not require any
kind of negotiation. The background server appears to the
applications as one normal Ethernet link, with the excep-
tion that it presents a reduced and variable bandwidth since
it inherits the capacity left free by the other servers. Thus it
does not interfere with the QoS guarantees of the real-time
channels, independently of the number of users it has.

4.2 Proposed functional architecture

Figure 3 presents the updated functional architecture of
the switch to support server-based scheduling. It follows
closely the one in [5] with two main modules, the Switch-
ing Module and the Master Module. The traffic arrives via
the input ports in the former module and is submitted to the
Classifier and Verifier Unit that classifies and validates the
received massages. The data messages are forwarded di-
rectly to the memory unit while FTT control messages, e.g.,
negotiation messages, are transferred to the Master Mod-
ule. The memory is divided in three independent zones,
each one for each traffic class, namely synchronous, server
and non-real time. The other main block inside the Switch-
ing Module is the Dispatcher Unit that handles the output
queues per traffic type and, according to the scheduling per-
formed by the master and conveyed in the Trigger Message,
transmits the selected messages from the memory directly.
The Master Module executes a complex set of operations,

4



namely the admission control, QoS manager, scheduler and
it also implements a System Requirements Database to store
the information related to the traffic management.

Figure 3. Switch functional architecture

The integration of server-based mechanisms in the FTT-
enabled switch is carried out by associating one server in-
stance to each asynchronous stream using the stream ID.
Such association is carried out upon a server creation, which
occurs both in the Master and Switching Modules. In the
former, the server creation requests arrive via FTT control
messages (FTT Requests in Figure 3) and trigger a QoS ne-
gotiation that results in specific server parameters that are
then communicated back to the application via the TM. In
the Switching Module, a FIFO with a requested depth is al-
located to the server from the Servers Memory by the Clas-
sifier Unit.

When a node transmits asynchronous messages, the
Classifier and Verifier Unit reads the stream ID and directs
them to the associated FIFO queue in the memory. If a node
transmits more messages than negotiated during a short pe-
riod of time, the corresponding FIFO will fill up. When its
limit is reached, further incoming messages are trashed.

In order to schedule the servers adequately, the Switch-
ing Module informs the Master Module, at the beginning of
each Elementary Cycle, about which messages have been
received by the servers in the previous EC (Servers Info
in Figure 3). With this information the Master knows how
much of the servers capacity is requested, information that
is subsequently used for the scheduling of the following EC.
The result of the scheduling is then communicated back to
the Switching Module, via the TM, where the Dispatcher

Unit enforces the respective transmissions. This process is
illustrated in Figure 4. The whole process incurs in a la-
tency of at least two ECs. This latency is the penalty to
pay for having the servers scheduled by the FTT Sched-
uler, inside the Master Module. An alternative would be to
have the servers scheduled autonomously in the Switching
Module (a preliminary trial was already considered in [10]).
However, this approach would make their dynamic adapta-
tion, e.g., in the scope of dynamic QoS management, more
difficult. The assessment of the trade-offs and implications
among the diverse integration possibilities is not a trivial
issue and will be subject of future work.

Figure 4. Servers forwarding process

When a communication channel is not needed anymore
it can be closed upon explicit request. This operation frees
the occupied resources, namely the FIFO in the Memory
Unit and the control structures in the Master.

5 Experimental results

This section presents two different experimental set-
ups, which address two distinct aspects of the switch-based
Server-SE operation. The first experiment, based on a static
scenario, shows the correct operation of both a sporadic
server and a background server, namely the limitation of the
bandwidth used by the associated message streams and the
confinement of the asynchronous traffic to the asynchronous
window. The second experiments is based on a dynamic
scenario, in which the streams vary the submitted load at
runtime. The purpose of this second experiment is to high-
light the correctness of the hierarchical relation between the
top-level polling server, which manages the asynchronous
window, and the sporadic and background servers. Namely
it is shown that the background server is able to dynamically
reclaim the predecessors server bandwidth not used by the
sporadic server.

The experimental results are obtained from a prototype
implementation of the server-enabled Ethernet switch ar-
chitecture following a similar Hw/Sw co-design approach
as proposed in [10]. The prototype switch implements the
Switching Module in hardware using a NetFPGA board
[11], integrating a Virtex-II Pro XC2VP50 FPGA and using
42% of the board total slices, with a maximum operation

5



frequency of 127.13MHz. The Master Module is imple-
mented in software, running in an independent CPU, a PC,
connected to the FPGA by a dedicated Ethernet link on Port
4.

The first experiment integrates two traffic types in order
to validate the switch traffic classification and confinement,
as well as the bandwidth limitation according to the servers
capacities and priorities. Figure 5 illustrates the setup. The
Master Module is configured with an elementary cycle of
1ms, 29% of which assigned to the synchronous window,
54% to the asynchronous window and 16% for the guard-
ing window. The remaining 1% is taken by protocol over-
heads, e.g., the TM transmission. The guarding window is
a period of time at the end of the EC during which no new
transmissions are allowed to start, in order to prevent EC
overruns and so assuring that the TM transmission never
suffers blocking. The switch is configured to full-duplex
100Mbit/s operation.

Figure 5. Experimental setup

In this scenario one node, Slave 1, sends 1500B size real-
time messages to Slave 3, separated only by the Ethernet
minimum inter-frame gap (96 bit times), thus generating a
load close to 100% of the respective uplink (M1). An as-
sociated sporadic server, with a 3000B capacity and a pe-
riod equal to two ECs handles this stream. Simultaneously,
a third node, Slave 2, continuously transmits non-real-time
1500B messages to Slave 3, also generating a load close to
100% of the respective uplink (M2). A sniffer is placed in
the link of Slave 3, allowing capturing and analyzing the
downlink traffic.

Figure 6 presents, for each EC, the histogram of the time
elapsed between the end of the transmission of the TM
and the transmission of both messages, measured during
approximately 31 seconds. The horizontal axis represents
the timeline of one EC (1ms), with the origin set at the

end of the TM transmission. The first 290µs are reserved
for the synchronous window which, in this case, remains
empty since no synchronous messages are defined. The
asynchronous window, which lasts for 540µs, conveys the
asynchronous traffic submitted to the switch, including both
by the higher-priority sporadic server, responsible by mes-
sage stream M1, and a lower-priority background server,
which uses the remaining bandwidth of the asynchronous
window to convey the NRT traffic, which in the present case
is restricted to message M2.

The histogram clearly shows the higher priority of the
sporadic server traffic, which appears at the beginning of
the asynchronous window followed by the NRT traffic, us-
ing the remaining time. The figure also shows that the server
effectively limits the load submitted to the network. In fact,
despite the source node submitting a load near 100%, only
an average of one packet per EC is effectively forwarded
by the switch. Finally, the figure also shows the message
confinement, since messages M1 and M2 are continuously
sent, but are only forwarded during the asynchronous win-
dow. To better understand the Figure 6, note that the asyn-
chronous window is able to convey only five messages of
1500B. In the depicted experiment the sporadic server is
able to send two messages in a row every two ECs. Then
the background server fills in the remaining of the asyn-
chronous window with three messages. In the following EC
the sporadic server has no budget and thus the background
server makes use of the full asynchronous window band-
width, sending five messages in a row, and then the cycle
repeats itself again.

Figure 6. Histogram of transmission inside
the EC

The second experiment involves the same nodes but ad-
dresses a dynamic scenario in which the real-time traffic
load varies at runtime. In this case Slave 1 sends 150B size
real-time messages to Slave 3 with a variable inter-arrival
time that allows controlling the generated load (M3). This

6



stream is handled by the same sporadic server as before.
Slave 2 transmits non-real-time 600B size messages, also
with a variable inter-arrival time (M4).

Figure 7 presents the throughput curves of each stream
in the downlink of Slave 3. Initially there is no traffic sent
to the switch. At time t=2s Slave 1 starts the transmission
of message M3, with an inter-arrival time that starts at 1ms,
decreasing over time until it reaches 0, thus generating a
load that varies gradually from approximately 1Mbit/s to
near 100Mbit/s (100% of its uplink). At time t=12s the
transmission of message stream M4 is initiated, following
a similar pattern as message M3, resulting in a load that
varies from approximately 5Mbit/s and grows up to near
100Mbit/s. At time t=21s the sporadic server inside the
switch reaches saturation at close to 12% load, arising from
the 3000B that it can transmit every two ECs. After that
point, the extra packets accumulate in the respective FIFO
and are eventually discarded. At time t=35s the background
server also saturates at close to 41% load for the NRT traf-
fic. This load is the remainder of the asynchronous window
after having accounted for the sporadic server traffic. Mes-
sage M3 is suspended at time t=48s, leaving all the asyn-
chronous window available to the NRT traffic. At timet=55s
message stream M3 is progressively reactivated, as before,
causing a decrease in the NRT traffic throughput. The step-
wise shape of the curves is due to discrete effects of non-
preemptive packet transmission and the arrangement of the
packets inside the asynchronous window. The saturation
levels are reached again around timet=70s.

Figure 7. Server and NRT traffic throughputs

This experiment shows the correctness of the hierar-
chical relation between the top-level polling server, which
manages the asynchronous window, and the sporadic and
background servers that handle messages M3 and M4, re-
spectively. Namely it is shown that the background server
is able to dynamically reclaim the asynchronous bandwidth
not used by the sporadic server, and that both servers alto-

gether never exceed the bandwidth inherited from the pre-
decessor server.

6 Conclusions

Composability is recognized as an appealing property
that may bring important reductions in development time
and costs of complex embedded systems. Server-oriented
architectures are an effective means to support compos-
ability by providing resource sharing, in a controlled way,
among different application components.

Most complex embedded systems are distributed and
thus, composability must also be supported by the networks
therein used. A communication technology that is particu-
larly popular in such systems is Ethernet, particularly in dif-
ferent real-time variants. However, the support for server-
based traffic scheduling by such protocols is limited in the
kind of server policies and hierarchical composition that can
be used and in the run-time creation, removal and adaptation
of servers.

Recently, the authors proposed the Server-SE protocol
to support server-based communication over Ethernet with-
out the constraints referred above. Such protocol, however,
operates over COTS switches, thus inheriting a few funda-
mental limitations these have concerning the lack of control
of the timing behavior of message streams.

This paper proposed an implementation of Server-SE
over a new customized Ethernet switch that follows the FTT
paradigm and which does not suffer from the referred lim-
itations. Particularly, this new Server-SE version over the
FTT-enabled switch supports a seamless integration of real-
time and non-real-time services, copes with arbitrary traf-
fic arrival patterns, allows arbitrary servers as well as their
composition, and supports their dynamic creation and adap-
tion. The paper also describes a prototype implementation
as well as a couple of practical experiments that show the
protocol capabilities of traffic differentation and confine-
ment.

Acknowledgment

This project was partially supported by the Portuguese
Government through grant SFRH/BD/32814/2006 and
project HaRTES - PTDC/EEA-ACR/73307/2006 and by the
European Community through the ICT NoE ArtistDesign -
214373. The authors also would like to thank Xilinx Inc. for
the donation of the Tri-mode Ethernet MAC soft IP core, as
well as ISE and ChipScope Pro FPGA design tools.

References

[1] I. Shin and I. Lee, “Compositional real-time schedul-
ing framework with periodic model,” ACM Trans. Em-

7



bed. Comput. Syst., vol. 7, no. 3, pp. 1–39, 2008.

[2] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras,
L. Almeida, and T. Nolte, “Server-based Real-Time
Communications on Switched Ethernet,” in CRTS
2008: First International Workshop on Compositional
Theory and Technology for Real-Time Embedded Sys-
tems. Barcelona - Spain: , 2008.

[3] R. Marau, P. Pedreiras, and L. Almeida, “Enhanc-
ing Real-Time Communication over COTS Ethernet
Switches,” in WFCS 06 - The 6th IEEE Workshop on
Factory Communication Systems. Turin - Italy: IEEE
Computer Society, Jun. 2006.

[4] T. Nolte, “Share-driven scheduling of embedded net-
works,” Ph.D. dissertation, Department of Computer
and Science and Electronics, Mälardalen University,
Sweden, May 2006.

[5] R. Santos, R. Marau, A. Oliveira, P. Pedreiras,
and L. Almeida, “Designing a Costumized Ethernet
Switch for Safe Hard Real-Time Communication,” in
2008 IEEE International Workshop on Factory Com-
munication Systems. IEEE Computer Society, May
2008, pp. 169 – 177.

[6] J. Loeser and H. Haertig, “Low-Latency Hard Real-
Time Communication over Switched Ethernet,” in
ECRTS ’04: Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 13–22.

[7] PROFInet, “Real-Time PROFInet IRT,”
http://www.profibus.com/pn, Dec. 2007.

[8] TTTech, “TTEthernet,”
http://www.tttech.com/solutions/ttethernet/, Nov.
2008.

[9] “Ethernet Powerlink - online information,”
http://www.ethernet-powerlink.org/.

[10] R. Santos, R. Marau, A. Vieira, P. Pedreiras,
A. Oliveira, and L. Almeida, “A Synthesizable Eth-
ernet Switch with Enhanced Real-Time Features,” in
IECON 2009: the 35th Annual Conference of the
IEEE Industrial Electronics Society, Porto - Portugal,
2009.

[11] NetFPGA, http://www.netfpga.org/, May 2009.

8


