
A Synthesizable Ethernet Switch with Enhanced
Real-Time Features

R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira
IEETA - DETI/University of Aveiro

3810-193 Aveiro, Portugal
{rsantos,marau,alexandrevieira,pbrp,arnaldo}@ua.pt

Luis Almeida
IEETA - DEEC/University of Porto

4200-465 Porto, Portugal
lda@fe.up.pt

Abstract—The use of switched Ethernet for safe real-time
communication still suffers from undesired phenomena, such as
blocking caused by long non-preemptive frames, lack of protec-
tion against errors in the time domain, couplings across virtual
LANs and priority levels via internal switch shared resources.
Recently, a few solutions were proposed to cope with such
phenomena. One such solution is based on an enhanced switch
following the Flexible Time-Triggered paradigm, which enforces
strict service differentiation with any kind of traffic scheduling,
blocking-free forwarding and timing errors confinement. In this
paper we propose a new architecture following an hardware-
software co-design approach that simplifies the development of
the enhanced switch features by detaching the traffic scheduling
from the traffic switching. The paper shows experimental results
with an actual switch prototype that confirm the desired switch
properties.

I. INTRODUCTION

Nowadays, switched Ethernet architectures present attrac-
tive features such as large bandwidth, cheap network con-
trollers, high availability, easy integration with Internet and
a clear path of evolution. These features are fostering the ex-
pansion of switched Ethernet architectures to new application
areas such as high-speed servoing, target tracking in military
systems or even the control of electrical protection systems
in substations. However, Ethernet switches are not typically
designed to support the timeliness and safety requirements
found in many of these emerging application areas. These
limitations arise from aspects like blocking caused by long
non-preemptive frames, lack of protection against errors in
time domain, a limited number of priorities and possible
memory overflows.

Supporting real-time communication with switched Ethernet
has been a topic of intense research for several years. Some
of the techniques proposed to overcome the limitations above
mentioned rely on Commercial Of-The-Shelf (COTS) Ethernet
switches while others use customized Ethernet switches. The
first group includes many different techniques, most of them
requiring software modifications in the end nodes. Techniques
in this group include traffic shaping [1], master-slave protocols
[2] [3] [4] that provide more efficient scheduling policies, QoS
management and admission control features or simply limiting
the generated traffic by application design [5]. However, by
relying in COTS hardware, the sphere of control of these
protocols is limited to the nodes that strictly comply with

the associated protocol. This limitation has two important
consequences. On one hand standard Ethernet nodes cannot be
integrated in the network since non-conformant transmissions
can jeopardize the real-time services. On the other hand the
system timeliness also becomes vulnerable to malfunctioning
nodes. A possible way to address these problems consists in
integrating the traffic management and control mechanisms
within the switch itself, creating a modified Ethernet switch.
This direction, followed in proposals such as [6] [7] [8], allows
obtaining gains in terms of performance and timeliness guar-
antees. This approach yields a relatively low level of intrusion
because it is still possible using COTS hardware and standard
software stacks in the end nodes, possibly with specific layers
just for accessing the real-time services. Additionally, the
integration of server-based traffic handling policies allows an
efficient handling of asynchronous messages streams [9].

This paper describes the FPGA-based architecture of a
modified Ethernet switch providing real-time communication
services based on the Flexible Time-Triggered paradigm. The
current architecture is an evolution of preliminary prototypes
[10] [6] [11] that simplifies the development of the enhanced
switch features by detaching the traffic scheduling from the
traffic switching, the former being implemented in software
in an external CPU and the latter being implemented in
a dedicated FPGA. The paper describes the whole switch
architecture and presents experimental results achieved with
a working prototype that validate the desired real-time and
traffic integration/isolation properties.

The paper is organized as follows. Section II presents the
related work and contribution. Section III presents the rationale
and scope for developing the new switch. Section IV presents
the implementation of the switching part of the FTT-enabled
switch using FPGA technology while Section V presents the
experimental results with a working prototype. Finally, Section
VI concludes the paper and points to lines of future work.

II. RELATED WORK AND CONTRIBUTION

FPGA technology presents a set of interesting features,
such as very large logic capacity, flexibility of use and low
NRE (Non-recurring engineering) costs, which makes it well
suited to build customizable devices with specific properties
for different application domains. Moreover, they exhibit a fast

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2817

design cycle, are easily upgradable and permit fast prototyping
due to high level modeling languages and synthesis tools.

Industrial and embedded device vendors are increasingly
interested in providing Ethernet devices supporting real-time
services. The flexibility and NRE costs of FPGA technology
make it very appealing to the industrial and embedded device
market. Additionally, according to [12], there is a demand for
the integration of Modbus/TCP, Profinet IO and Ethernet/IP
into a single device. The FPGAs are probably the best solution
to this problem, given the possibility to integrate soft-core
processors and IP cores.

For the case of real-time Ethernet protocols, one possible
solution is to enhance the switches with tighter timing control
and traffic classification capabilities. There are currently two
protocols that use modified switches, TTEthernet and Profinet
IRT.

TTEthernet (Time Triggered Ethernet) [8] [13] [14] is a
new scalable real-time Ethernet platform that provides safe
and real-time Ethernet communication services. The commu-
nication can be performed using three different traffic classes,
Time-Triggered (TT), Rate-Constrained (RC) and Best-Effort
(BE) messages. This protocol uses a modified switch that
includes a dedicated TTEthernet controller and a high per-
formance switching module based on an FPGA board [8].

The other protocol relying on customized Ethernet switches
is Profinet IRT [7] [15] [16]. It is implemented with a modified
switch that offers determinism in the transmission through
explicit bandwidth reservation for the real-time data. The
scheduling parameters are configured during the setup phase
and they are obtained through the previous execution of a
scheduling algorithm. On the other hand, this switch also
allows the integration of Ethernet standard devices whose
traffic is confined to dedicated time windows.

Despite the advantages presented by the above two proto-
cols, they exhibit some limitations, e.g., they require a static
pre-defined configuration for the real-time traffic, the on-line
admission control is not generally available and miss the
capability to adapt on-line to variable communication require-
ments as needed for dyamic quality of service management.
Therefore, we propose an alternative based on the Flexible
Time-Triggered (FTT) paradigm that is fully reconfigurable
online. We propose an FTT-enabled switch providing support
for arbitrary traffic scheduling policies, as well as online
admission control, policing mechanism and dynamic quality
of service management. Among the traffic scheduling poli-
cies, the switch integrates server-based scheduling techniques
to efficiently handle real-time streams with arbitrary arrival
patterns (video streams, alarms, sensors, ...) as well as legacy
applications that are not prepared for the transmission control
involved in synchronous communication. With these features,
we believe this is the first Ethernet switch capable of providing
a truely flexible solution for handling synchronous real-time,
asynchronous real-time and non-real-time traffic with mutual
isolation.

Fig. 1. FTT-Enabled Switch.

III. FTT-ENABLED SWITCH

A. Rationale

The FTT-enabled switch is based on the Flexible Time-
Triggered paradigm, with the FTT master included in the
switch (Figure 1). Therefore, it uses the master/multi-slave
transmission control technique, according to which a master
addresses several slaves with a single poll message, consid-
erably alleviating the protocol overhead when compared to
the conventional master-slave techniques. The communication
is organized in fixed duration slots called Elementary Cycles
(ECs). Each EC starts with one poll message sent by the
master, called Trigger Message (TM). The TM contains the
schedule for that particular EC. Only the messages that fit
within an EC are scheduled by the Master, thus memory
overflows inside the switch are completely avoided. The FTT
protocol defines three traffic classes: i) periodic real-time
messages activated by the Master (referred to as synchronous
since their transmission is synchronized with the periodic
traffic scheduler); 2) aperiodic real-time traffic (called asyn-
chronous), autonomously activated by the application within
each node and 3) non real-time traffic. The synchronous
and asynchronous traffic are transmitted within the real-time
window and have guaranteed timeliness, while the non real-
time traffic is scheduled in background, in the time left within
the EC, in the so-called non real-time (NRT) window.

This solution with the FTT master included in the switch
enables preserving all FTT attributes, but at the same time, it
permits obtaining important gains in the following key aspects:

• A performance boost of the asynchronous traffic, which in
this case is autonomously triggered by the nodes instead
of being polled by the master node, while maintaining
agreggated or per-stream temporal isolation;

• An increase in the system integrity since unauthorized
transmissions can be readily blocked at the switch input
ports, thus not interfering with the rest of the system.

• Seamless integration of non-FTT-compliant nodes with-
out jeopardizing the real-time services.

B. Architecture

The functional architecture of the FTT-enabled Ethernet
switch has been presented and discussed in earlier work [10]
[6] [11]. It is basically formed by four main blocks, the master

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2818

itself, which includes the System Requirements Data Base, the
admission controller, the synchronous scheduler and Quality of
Service (QoS) manager, the input blocks that classify, validate
and filter the ingress traffic, the global memory pool that holds
the messages of each class in independent subdivisions, and
the output blocks that include three pointer queues, one for
each traffic class, and asure the jitter-free transmission of the
TM in each EC.

This architecture allows us maintaining a tight control
on the traffic that enters the switch, including enforcing an
adequate timing behavior and temporal isolation among traffic
classes, whichever is the traffic arrival pattern. Therefore,
nodes producing NRT or asynchronous traffic can use the
switch transparently, as if it was a standard Ethernet switch,
without needing any modification of the node software. The
former traffic will not interfere with the latter and none
will interfere with the synchronous traffic that might be
flowing through the switch. This grants a high flexibility to
the proposed solution for real-time communication, which
efficiently combines those heterogeneous traffic classes with
mutual temporal isolation. An appropriate FTT network driver
is just required for the synchronous communication services
and for setting up asynchronous channels.

IV. FTT-ENABLED SWITCH IMPLEMENTATION

The hardware architecture of the FTT-enabled switch using
FPGA technology is shown in Figure 2. The FTT master,
represented by the Master Unit, executes a complex set of
operations and thus it is better suited for software implementa-
tion. On the other hand, there are several functionalities in the
FTT-enabled switch that need predictability, determinism and
speed in their execution thus being preferable to execute them
in hardware. This group includes the reception, switching and
transmission processes. This way, all blocks except the Master
Unit are implemented in hardware (Figure 2). We will call this
set of blocks the Switching Module.

The integration of these two parts, Master Unit and Switch-
ing Module, can be performed in different ways:

• The Master Unit runs in an independent CPU and the
communication with the FPGA is carried out by a conven-
tional communication mean available in the development
board (e.g Ethernet, USB, PCI, ...);

• Utilization of an FPGA embedded processor to execute
the Master Unit, either synthetizable or hardwired (e.g
MicroBlaze, PowerPC).

To save resources in the FPGA, we currently followed the
former approach, using an Ethernet port of the switch.

A. Hardware Implementation

Figure 2 represents the complete view of the FTT-enabled
switch. The Switching Module is implemented on an FPGA
except for the Ethernet PHYs that remain outside due to
their electrical characteristics, timing requirements and wide
availability of pre-built modules

1) MAC IP Core: Each Ethernet port has one associated
Ethernet PHY directly linked to one Xilinx Tri-Mode Ethernet
MAC soft core fully compliant with the IEEE 802.3 standard,
which can operate at 10/100/1000 Mbits/sec and can be
implemented on the programable logic resources of Xilinx
FPGAs. This MAC core is highly configurable and provides
reception/transmission control, core management and Ethernet
PHY Media Independent Interface.

The MAC IP Core provides the clocks that enable the
reception and the transmission of data. On the other hand, one
independent main clock manages the switch core, composed
by three main blocks (Memory Pool, Switching and Control
Logic and Master Interface). The union of these different clock
domains was possible using FIFOs (included inside the MAC
Interface Unit) with independent clocks for the write and read
sides. This way, for each port, the information received from
the MAC IP Core is written in the corresponding FIFO with
the reception clock provided by the same MAC. The reading
of the information from the FIFO is performed with the main
clock. The transmission of the data is processed in a similar
way. The data ready for transmission in a specific port is
written in the transmission FIFO with the main clock and read
by the MAC with its transmission clock.

2) MAC Interface Unit: The MAC Interface Unit, specific
for each switch port, implements all the logic that allows to
configure the MAC IP Core. In the reception, it classifies,
validates and handles the received data, writing it in memory.
In the transmission, it reads the data from the memory, handles
it and manages the interface with the MAC IP Core for the
transmission.

The Reception Unit implements the reception interface of
Ethernet frames coming from the MAC IP Core. The received
data are inserted in the FIFO that separates the clock domains.

The next unit in the reception chain is the Classifier and
Validate Unit that processes the received packets accordingly.
For instance, the non-FTT packets are directly delivered to the
Reception Buffer Unit. The FTT control packets, that comprise
commands to the Master Unit, are delivered to the Master
Interface. Finally, the remaining packets still pass through a
validation process. If these packets are consistent with the EC-
Schedule provided in the Trigger Message by the Master Unit,
they are delivered to the Reception Buffer Unit, otherwise, they
are trashed. Thus, the integrity of the switch and network is
guaranteed.

The Reception Buffer Unit accumulates the incoming bytes
to form a word N-bytes wide, where N is the number of
ports. This way, the writing in the Memory Unit is carried
out, per port, with N bytes at a time and at a rate N times
slower than the arrival rate of the respective byte stream. After
multiplexing all N ports, the writing frequency at the Memory
Unit is equal to the bytes arrival rate at the individual ports,
avoiding the need for higher frequency clocks. This technique
is also used in the transmission chain by the Transmission
Buffer Unit, which receives words N bytes wide from the
Memory Unit and forwards the data to the respective FIFO
one byte at a time. The reading frequency from the Memory

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2819

Fig. 2. FTT-enabled switch - complete view.

Unit is again equal to the byte transmission rate in the port
FIFO.

The Transmission Unit reads the data from the FIFO, used
to separate clock domains, and manages the sending of this
data to the MAC IP Core. Finally, in a different chain, the
Configuration Unit implements the logic used to configure the
MAC IP Core at startup.

3) Control and Switching Logic Unit: The Control and
Switching Logic Unit plays a central role within the switch,
performing the reception, switching and transmission manage-
ment based on the control and status signals provided by MAC
Interface Unit. Moreover, it synchronizes all the switch and
protocol operations. The Reception Control Unit manages the
forwarding of the received packets to the output ports. This
unit receives, for each Elementary Cycle, the corresponding
Trigger Message, which includes the identification of all real-
time data packets (FTT data) that will be received from each
input port and sent by each output port (EC-Schedule). Thus,
the FTT data packets are forwarded based on the contents of
the Trigger Message, only. On the other hand, normal non-
real-time packets (non-FTT data) are forwarded based on the
Forwarding Table that is updated dynamically as in common
switches. The actual forwarding is carried out by delivering
the pointers of the respective packets to the Packet List Unit
attached to the corresponding output port, and inserting them
in the correct queue. This unit contains three queues, one
for each traffic class (Sync RT, Async RT, and NRT), which

contain the pointers to the packets that have to be sent in this
EC.

4) Transmission Control Unit: The Transmission Control
Unit controls the transmission of the packets in those queues
respecting the corresponding phases in the EC, thus enforcing
appropriate traffic confinement of the different traffic classes.
Moreover, the Transmission Control Unit only transmits mes-
sages from the asynchronous or NRT queues if the time
left within the respective windows is enough, thus preventing
blocking of the Trigger Message and synchronous traffic. To
start the transmission of a packet, this unit asks the Memory
Unit to send its data to the MAC Interface Unit of the
respective output port. One particular case is the transmission
of the Trigger Message, which is sent directly to all MAC
Interface Units (broadcast), at the beginning of each EC, as
determined by the Synchronization Unit, in a blocking-free
fashion thus with high precision. The Synchronization Unit
controls the EC timing and requests EC-Schedules (Trigger
Messages) from the Master Unit.

5) Memory Pool: The Memory Pool implements a dual
port static Synchronous Random Access Memory - SRAM
with separate clocks, control, address and data buses. One port
(write only) is shared among all input ports and the other (read
only) used by all output ports. The memory is segmented in
blocks that allow to store packets with maximum size, and
each block can store one packet, only. This mechanism is inef-
ficient with short packets but simpler to manage, deterministic

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2820

and not suffering from fragmentation. Therefore, it is enough
to prove the concept.

6) Multiplexing/Demultiplexing Units: The Rx Multiplex-
ing Unit is shared among all switch ports. It is basically a
multiplexer (TDMA wheel) that allows all port uplinks to
write the received messages data into the switch main memory.
Contrarily, the TX Demultiplexing Unit is also shared among
all switch ports and it is basically a demultiplexer that allows
all ports to read data from the Memory Pool and write it on
the corresponding downlink MAC.

B. Software Implementation

The Master Unit implements the SRDB, the QoS Manager,
the Admission Control and the Scheduler. From an imple-
mentation point of view, these operations are algorithmically
complex and make extensive use of dynamic lists, which are
more efficiently implemented in software. Moreover, these
operations basically correspond to the functionality of the
Master in the FTT-SE protocol [2], which is a fully software
implemented version of the protocol that works over COTS
Ethernet switches.

Therefore, in order to re-use the FTT-SE Master as the
Master Unit, the Master Interface was designed to provide
the necessary standard interfaces that FTT-SE uses, namely
one Ethernet port. Moreover, this port is dedicated to the
communication with the Master Unit and does not integrate
the communication ports managed by the Switching Module,
which allowed us to incorporate the FTT-SE Master with
minimal adaptations, offering substantial gains in development
time. Thus, the FTT-SE Master is an autonomous component
that can be connected to a COTS switch or to the Switch-
ing Module herein proposed, providing two different levels
of service concerning traffic filtering, confinement, policing,
temporal protection and compatibility with non-FTT nodes.
This is a highly flexible and efficient solution.

One aspect that had to be worked out was the EC clocking.
In the full software version of FTT-SE the EC timing is
directly controlled by the Master. In the enhanced switch
herein proposed the EC timing is controlled by the switch
Synchronization Unit. This unit sends requests to the Mas-
ter Unit that triggers the scheduling activity leading to the
generation of the Trigger Messages containing the respective
EC-Schedules, which are then used by the Switching Module.

This aspect is also relevant when considering multi-switch
topologies. In such case, only one Master is used and the
source of the EC clocking must be unique, too. Therefore,
when using the enhanced switch, it must be the only one of
such kind, with all others being COTS switches. Other alter-
natives to multi-switch architectures based on the enhanced
switch are still under development.

Concerning the internal components of the Master Unit,
the System Requirements Database (SRDB) deserves a spe-
cial reference. It is a central repository for all the infor-
mation related to traffic management, namely the messages
attributes for both synchronous and asynchronous traffic, e.g.,
period/minimum inter-arrival time, length in bytes, priority if

Fig. 3. Experiment 1: synchronous and NRT traffic.

applicable, deadline and offset if applicable, plus information
about the resources allocated to each traffic class, e.g., phase
durations and maximum amount of buffer memory, and global
configuration information, e.g., elementary cycle duration and
bit rate.

The attributes in the SRDB can be updated on-line via
FTT requests that are identified by the Switching Module
and forwarded to the Master Unit. These requests can ask
for addition or removal of messages to/from the SRDB, for
example, in the course of on-line reconfiguration procedures,
or even changing attributes of existing messages, for example,
in the course of dynamic QoS management.

Finally, the Scheduler scans the SRDB on-line, every EC,
and builds the list of real-time messages that must be produced
in the following EC (EC-Schedule). This list is incorporated
into the Trigger Message and sent to the Switching Module
where it is buffered. The right transmission instant is defined
by the Synchronization Unit, ensuring a precise timing.

V. EXPERIMENTAL RESULTS

This section presents experimental results obtained from an
implementation of the switch architecture presented in Section
IV. This architecture was implemented in a NetFPGA board
[17] that integrates a Virtex-II Pro XC2VP50 FPGA. This
implementation uses 42% of total slices and the maximum
frequency of operation is 127.13 MHz. Two experiments were
carried out integrating different types of traffic in order to
validate the switch traffic isolation capabilities.

In the first experiment, we addressed the temporal isolation
between the synchronous traffic and the non-real-time traffic.
Figure 3 illustrates the setup. The FTT-Master implements
a 1ms elementary cycle, 41% of which assigned to the
synchronous window, 42% to the NRT window and 16%
for the guarding window. The remaining 1% is occupied by
protocol overheads, for instance the TM transmission. The
guarding window is a period of time at the end of the EC
and before the next TM transmission, during which no new
transmissions are allowed to start. Making this window as large
as the largest packet in the network assures that the following
TM transmission will never suffer blocking. In this scenario
Slave 3 sends a 1kB synchronous message to Slave 2, which is

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2821

Fig. 4. Jitter affecting the Synchronous message.

Fig. 5. Jitter affecting the Trigger Message.

scheduled by the FTT Master every EC. Slave 1 transmits non
real-time 800B multicast packets (NRT) to Slave 2 and Slave
3 separated by the minimum inter-frame gap, thus generating
a load close to 100% in the respective uplink. On the other
hand, the switch imposes, due to the NRT window length, a
maximum of 42% NRT traffic load on the downlinks of Port 2
and 3. The exceeding traffic is discarded inside of the switch.

Figure 4 presents the jitter histogram that affected the
synchronous message measured on the switch output in Port
2. The jitter magnitude was around ±9µs and is originated
in the PC architecture of the sender node. It is substantially
inferior to what would be expected if there was interference
from the NRT traffic (±66µs - transmission time of one NRT
packet), which is not the case.

Still in the same experiment, we also measured the jitter
affecting the transmission of the TM at the switch output,
together with the remaining traffic. Figure 5 presents the
histogram of the results achieved, which indicate a very high
precision of the TM transmission with a jitter inferior to 50ns,
even when some links were used at close to 50% capacity. This
clearly shows the strict temporal isolation of the TM with
respect to the remaining traffic, thus being a high precision
temporal mark available in the system that can, for example,
be used for clock synchronization purposes.

The second experiment is illustrated in Figure 6. In this

Fig. 6. Experiment 2: asynchronous and NRT traffic.

case, there is no synchronous window. Slave 3 sends to Slave
2 an asynchronous real-time stream with 1500B packets and an
average inter-arrival interval of 200µs. The respective source
switches the stream on and off after a few seconds of silence
or intense communication, respectively. Simultaneously, an ftp
session is initiated to transfer a large file from Slave 1 to
Slave 2. The asycnhronous traffic is handled by a sporadic
server such as proposed in [9]. Servers grant composability
in the temporal domain to aperiodic traffic sources limiting
their impact in the remaining traffic. The server capacity was
set equal to the length of one message, i.e., the time to
transmit one 1500B packet, and the replenishment period equal
to 400µs. With these parameters, the server is overloaded
during the intervals of intense communication. However, the
server parameters ensure that any two consecutive packets of
this stream are never forwarded to Slave 2 with less than
400µs separation. This server can be blocked by: an on-going
NRT packet transmission (the worst case is the transmission
of a packet with the maximum ethernet length - 123µs);
the guarding window (123µs), used to allow the TM to be
transmitted without any interference; and by TM transmission
itself (7µs). Therefore, the possible total interference can be
up to 290µs.

Figure 7 shows the histogram of the inter-transmission
times of the asynchronous stream measured at the switch
output in Port 2. As expected, the inter-transmission intervals
are seldom below 400µs, with occasional intervals that go
down to 360µs. The measurements have been made with a
standard Linux PC, with the message time-stamping made at
the application layer, inducing a precision around 40µs [2].
Thus the observed values are compatible with the accuracy of
the measurement system. As expected, the shape of the inter-
transmission intervals distribution is relatively irregular, due to
the possible interference caused by the irregular length of the
on-going NRT transmissions, as well as the guarding window
and the TM transmission.

Finally, Figure 8 shows the effective bandwidth usage by the
NRT and the asynchronous streams during nearly 43 seconds
of consecutive operation in the output link of Port 2. We

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2822

Fig. 7. Inter-transmission time of the asynchronous stream.

Fig. 8. Effective bandwidth usage.

can clearly see the higher priority given to the asynchronous
stream server (lower graph) with respect to the NRT (ftp)
traffic (upper graph). We also see the background priority level
assigned to the ftp traffic, which uses what is left available.
On the other hand, the bandwidth granted immediately by the
server to the asynchronous stream when it starts transmitting
intensely, reducing accordingly the bandwidth given to the
ftp stream. Note when occurs pauses on the ftp transmission
(at 8s, 14s and 29s) the asynchronous real-time stream uses
more bandwidth, because there is no interference. When this
happens, the maximum allowed number of server messages
per cycle is transmitted.

VI. CONCLUSIONS AND FUTURE WORK

The advent of switched Ethernet has opened new perspec-
tives for real-time communication over Ethernet. However, a
few problems subsist related with queue management policies,
queue overflows and limited priority support. While several
techniques were proposed to overcome such difficulties, the
use of standard Ethernet switches constraints the level of per-
formance that may be achieved. On the other hand, the grow-
ing availability of powerful programmable hardware devices
and associated tools as well as IP cores of communication
components opens the way to build customizable devices with
properties that are better tuned to specific application domains.

Therefore, following such trend we proposed recently an
FPGA-based enhanced Ethernet switch relying on the Flex-
ible Time-Triggered paradigm that enforces strict temporal
isolation of three traffic classes, provides seamless integration
of non-FTT nodes without causing any interference on the
periodic real-time traffic, also provides filtering of unautho-
rized transmissions at the switch ingress and generates a high
precision time mark.

In this paper we presented an architecture for such enhanced
switch that exploits the separation between the packet switch-
ing activity and the FTT Master functionality, the former being
implemented in hardware (Switching Module) and the latter in
software (Master Unit). This also allowed reusing the Master
of the fully software implemented FTT-SE protocol with minor
adjustments and great benefits in modularity and development
costs. The paper also described the hardware implementation
of the Switching Module, with a focus on the synchronization
issues among the asynchronous units inside the switch.

On-going work addresses the full characterization of the
overheads incurred by the proposed architecture concerning
the interconnection between the Switching Module and Master
Unit to derive performance limits. Two other issues will also
be addressed, namely the adaptation of the enhanced switch
to allow the coexistance of several units in the same synchro-
nization domain and the replication of the Master. The design
of specific gateways for connecting different synchronization
domains will also be addressed.

VII. ACKNOWLEDGMENTS

This project was partially supported by the Portuguese
Government through grant SFRH/BD/32814/2006 and project
HaRTES - PTDC/EEA-ACR/73307/2006 and by the European
Community through the ICT NoE ArtistDesign - 214373. The
authors also would like to thank Xilinx Inc. for the donation
of the Tri-mode Ethernet MAC soft IP core, as well as ISE
and ChipScope Pro FPGA design tools.

REFERENCES

[1] J. Loeser and H. Haertig, “Using Switched Ethernet for Hard Real-
Time Communication,” in PARELEC’04 - International Conference on
Parallel Computing in Electrical Engineering. Dresden - Germany:
IEEE Computer Society, Sep. 2004, pp. 349–353.

[2] R. Marau, P. Pedreiras, and L. Almeida, “Enhancing Real-Time Commu-
nication over COTS Ethernet Switches,” in WFCS 06 - The 6th IEEE
Workshop on Factory Communication Systems. Turin - Italy: IEEE
Computer Society, Jun. 2006.

[3] E. T. Group, “EtherCAT - Ethernet for Control Automation Technology,”
http://www.ethercat.org, Dec. 2007.

[4] “Ethernet Powerlink - online information,” http://www.ethernet-
powerlink.org/.

[5] O. D. V. Association, “Ethernet/IP,” http://www.odva.org/.
[6] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and L. Almeida,

“Designing a Costumized Ethernet Switch for Safe Hard Real-Time
Communication,” in 2008 IEEE International Workshop on Factory
Communication Systems. IEEE Computer Society, May 2008, pp. 169
– 177.

[7] PROFInet, “Real-Time PROFInet IRT,” http://www.profibus.com/pn,
Dec. 2007.

[8] TTTech, “TTEthernet,” http://www.tttech.com/solutions/ttethernet/, Nov.
2008.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2823

[9] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida, and
T. Nolte, “Server-based Real-Time Communications on Switched Eth-
ernet,” in CRTS 2008: First International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems. Barcelona
- Spain: IEEE Computer Society, 2008.

[10] R. Marau, P. Pedreiras, and L. Almeida, “Enhanced Ethernet
Switching for Flexible Hard Real-Time Communication,”
http://www.csem.ch/events/RTN06/RTN06.html, jul 2006, rTN 2006,
5th Workshop on Real-Time Networks, Dresden, Germany.

[11] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and L. Almeida, “FPGA-
based Implementation of an Ethernet Switch for Real-Time Applica-
tions,” in REC’09: V Jornada sobre Sistemas Reconfigurveis, Monte da
Caparica - Portugal, 2009.

[12] “Automation.Com Magazine,” http://www.automation.com/content/softing-
uses-altera-fpga-for-real-time-ethernet.

[13] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz, “A Time-
Triggered Ethernet (TTE) Switch,” in DATE’06 - Design Automation
and Test in Europe. Munich - Germany: ACM, Mar. 2006, pp. 794–
799.

[14] M. Plankensteiner, “TTEthernet enabes the use of Ethernet networks in
all applications,” Embedded Control Europe, pp. 12–14, 2008.

[15] P. Ferrari, A. Flammini, D.Marioli, and A. Taroni, “Experimental evalua-
tion of PROFINET performance,” in 2004 IEEE International Workshop
on Factory Communication Systems, 2004, pp. 331–334.

[16] J. Feld, “PROFINET - Scalable Factory Communication for all Applica-
tions,” in 2004 IEEE International Workshop on Factory Communication
Systems, 2004, pp. 33–38.

[17] NetFPGA, http://www.netfpga.org/, May 2009.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2824

