
On Hierarchical Server-based Communication with Switched Ethernet

Rui Santos, Paulo Pedreiras
IEETA / University of Aveiro

Aveiro, Portugal
{rsantos, pbrp}@ua.pt

Farahnaz Yekeh, Thomas Nolte
MRTC / Mälardalen University

Västerås, Sweden
thomas.nolte@mdh.se

Luis Almeida
University of Porto

Porto, Portugal
lda@fe.up.pt

Abstract

Ethernet is becoming a common network technology for in-
dustrial and factory automation systems and, in recent years, a
big effort has been made in enabling real-time communications
using Ethernet technology. Many of these systems are complex,
extend over relatively large places and/or integrate a significant
number of nodes, thus requiring the use of multiple switches
(hop). In this paper we look into the usage of Flexible Time-
Triggered (FTT) enabled Ethernet switches in this class of sys-
tems, more specifically using the recently proposed server-based
scheduling mechanism supported by this protocol. The paper
proposes and validates a resource reservation protocol, presents
a method for computing the end-to-end deadlines and discusses
possible strategies for the deadline partitioning. 1

1 Introduction

Over the past years, Ethernet has moved in the direction
of becoming the de-facto standard networking technology for
industrial and factory automation systems. However, when
comparing to the original applications of the Ethernet technol-
ogy, where throughput was the main driving factor, industrial
and factory automation systems often have real-time require-
ments. These requirements are not straightforwardly guaranteed
by standard Ethernet, which led to the development of several
protocols, commonly known as Real-Time Ethernet (RTE), able
to provide adequate temporal behaviour for that class of appli-
cations.

At the same time the complexity, amount and heterogeneity
of the data exchanged between node in these applications is also
increasing. Namely, many systems nowadays integrate periodic
and sporadic message flows (flows, for short) with sizes rang-

1This work was partially supported by the Swedish Foundation for Strategic
Research (SSF), the Swedish Research Council, the iLAND project, call 2008-
1 of the EU ARTEMIS JU Programme, by the European Community through
the ICT NoE 214373 ArtistDesign and by the Portuguese Government through
the FCT project HaRTES - PTDC/EEA-ACR/73307/2006 and Ph.D. grant -
SFRH/BD/32814/2006.

ing from a few bits (simple I/Os) to several KB (e.g. multime-
dia sensors such as cameras) and diverse timeliness constraints.
Furthermore, the configuration of these flows is often dynamic
in nature, thus flows can be added, changed or removed during
run-time. However, the support of these features in a network is
hampered, since the network components usually do not have 1)
efficient mechanisms to differentiate flows, 2) support of tempo-
ral isolation among flows, and 3) efficient sharing of the network
resource.

In order to solve the limitations enumerated above, the in-
tegration of flow management with hierarchical server-based
scheduling (originally inherent in CPU scheduling) has been
tested in network domain, specifically in the context of single
switch architectures [5] [6]. In this case, hierarchically arranged
servers can manage a flow or a group of flows, preforming con-
tention, i.e., ensuring that the flows do not use more resources
(bandwidth) than what has been negotiated while at the same
time providing a guaranteed level of negotiated QoS. However,
a single switch architecture is not naturally scalable and it does
not respond to traditional RTE network requirements, such as
great coverage and composition of different sub-systems (corre-
sponding sub-networks). Therefore, a number of issues must be
looked into, stretching from timing analysis of message trans-
missions across a hierarchical architecture of multiple switches
(hop) to simple and efficient bandwidth reservation mechanisms.

Therefore, in this work-in-progress paper we present and dis-
cuss a preliminary protocol for bandwidth reservation, allowing
for the transmission of traffic flows with real-time guarantees
using server-based scheduling techniques implemented in the
switches. The presented solution aims to improve the process to
handle concurrent requests, always assigning available resources
to requests intended for higher priority flows. Moreover, timing
analysis is introduced and discussed. As a test platform we have
been using FTT-enabled Ethernet switches, since new features
are easily implementable on that platform.

The remainder of the paper is organized as follows. Section 2
presents overview of related work, and Section 3 outlines the
system model. Section 4 discusses a preliminary protocol for
bandwidth reservation, followed by Section 5 that addresses the
timing analysis and Section 6 that concludes the paper.

978-1-4244-6850-8/10/$26.00 ©2010 IEEE

2 Related work

EtheReal [7] is a protocol which uses a switch that provides
guaranteed-bandwidth network services without the need of co-
operative end nodes. This way, all real-time capabilities of the
network are implemented through a combination of user-level li-
braries and switch hadware/sofware. To guarantee differentiated
QoS of real-time connections, explicit resources need to be re-
served and associated to these connections. During the connec-
tion setup a reservation request message is sent to the network
and an admission control in each switch checks if the new real-
time connection interferes in the guarantees of the real-time con-
nections already admitted. If the resources requested/required
are available, the connection is admitted, resources are reserved,
and the request is forwarded to the next hop – otherwise it is
rejected and the reservation failure message is sent back to the
requesting node, releasing the reserved resources along the way.

Hoang et al. [1] developed a technique that supports a mix of
Real-Time (RT) and non-real-time traffic coexisting in a switch-
based Ethernet network. The RT traffic is scheduled according
to the Earliest-Deadline-First (EDF) policy, and its timeliness
is guaranteed by means of adequate online admission control.
The creation of the RT channel consists of sending requests and
getting responses between the source, the switch and the desti-
nation. If all of these devices agree on establishing an RT chan-
nel, after checking their feasibility tests, the RT channel will be
established.

Zhang et al. [8] address hard real-time communication over
multi-hop switched Ethernet without any modification to exist-
ing Ethernet hardware. A dual-level traffic smoothing mech-
anism realizes hard real-time communication over multi-hop
commodity switched Ethernet. The message transmission de-
lays at each networking component are firstly analyzed using
the network calculus theories over multi-hop switched Ethernet.

Summing up, current real-time communication approaches
in switched Ethernet, and respective resource reservation proto-
cols, are topically based on a single switch architecture, assum-
ing the existence of cooperative nodes hence not allowing for
legacy nodes. Moreover, other approaches do not provide an ef-
ficient mechanism to share the bandwidth and they do not allow
for composability in the time domain.

3 System Model

In this paper we look into the usage of Flexible Time-
Triggered (FTT) enabled Ethernet switches [4] in multi-hop ar-
chitectures. The FTT-enabled Ethernet switch is a novel real-
time Ethernet switch created in the scope of the FTT paradigm.
The communication is organized in an infinite succession of El-
ementary Cycles (ECs). These ECs are divided in two windows
– the synchronous window and the asynchronous window. The
former window is used for synchronous communications that are

coordinated by a master implemented inside the switch. There-
fore, to control which messages that are to be transmitted in
the synchronous window the switch (master) broadcasts a Trig-
ger Message (TM), in the beginning of each EC, to all nodes
(slaves) containing the schedule for the corresponding (upcom-
ing) synchronous window. The latter window, the asynchronous
window, is used for asynchronous communications (flows) au-
tomatically triggered by the nodes and managed during runtime
by the servers resident inside the switch. Each flow, or a group
of flows, requires a suitable admission control by the switch that
allocates/configures a server to handle it.

Summing up, the FTT-enabled Ethernet Switch provides the
following features: 1) online admission control, dynamic QoS
management and arbitrary traffic scheduling policies; 2) high
system integrity with unauthorized real-time messages being
eliminated at the switch input ports; 3) asynchronous traffic au-
tonomously triggered by the nodes, with arbitrary arrival pat-
terns; 4) high configurability: fully synchronous mode, ad-
justable mixed synchronous/asynchronous mode and fully asyn-
chronous mode; 5) a standard node can take advantage of the
real-time services simply negotiating with the switch the cre-
ation of a server, i.e., a virtual channel (the negotiation can even
be done by a third party node); 6) a standard node can readily
transmit non-real-time traffic using a background server thus not
interfering with the real-time traffic.

Therefore, we rely on an architecture of hierarchically com-
posed FTT-enabled Ethernet switches, as depicted in Figure 1.
Inside each switch, each flow of messages is managed by one
corresponding server. Hence, a switch hosts a number of servers
equal to the number of flows going through the switch. All
switch internal servers are then scheduled by the switch dur-
ing runtime. Hence, whenever a flow has to go through sev-
eral switches in the network, corresponding servers must be
present in each switch. As a result, when flows are dynami-
cally managed with flows added and removed during runtime,
servers must be added or removed in all switches that the flow
pass through. From an application point of view, this framework
is easily applicable. The RT channel can be allocated through
a simple protocol interface application or by third party nodes.
Moreover, the legacy nodes can communicate without guaran-
tees, using background servers available in the FTT-enabled Eth-
ernet switches and without interfere with allocated RT channels.

In the following section we present our work on the develop-
ment of a protocol for management of this dynamic management
of servers in a hierarchical architecture of FTT-enabled Ethernet
switches.

4 Protocol

This section presents the protocol that reserves the resources
(bandwidth), i.e., creates/reserves the servers, in all network
components (switches) that are in the path between two distinct
nodes of the network. A suitable reservation mechanism cre-

ates a real-time channel that allows to transmit a flow or a group
of flows with a minimum QoS level required and defined in the
reservation process. Basically, the protocol is divided in two
steps, the first step pre-reserves the resources in all switches in
the path between the source and the destination node, running
an admission control test in each of them. The second step per-
forms the reverse path and allocates or releases the pre-reserved
resources depending on if the first step was successful or not.

Figure 1: Resource reservation protocol.

Particularly, the application source node that wants to initi-
ate a flow transmission with real-time guarantees has to create a
RT channel between itself and the destination node. For that, it
should send a connection setup request message to the network
(step 1) containing 1) the RT channel identifier, 2) the flows
identifier and 3) the required QoS parameters. Then each switch
in the path executes the feasibility analysis in its admission con-
trol, by checking the 1) requested memory needed for transmit-
ting the desired data, 2) available bandwidth for the requested
channel and 3) if the required channel verifies the end-to-end
transmission delay at this point. If the result of a corresponding
feasibility analysis becomes true, the RT channel is accepted,
resources (servers) are pre-reserved and the connection setup re-
quest message is forwarded to the next hop and so on, until it
reaches the final switch along the path to the destination. If the
connection request passes the admission control criteria of all
the switches along the path, the last switch sends a reply success
message to the source node. This message is sent in the reverse
way, allocating the pre-reserved resources in each switch along
the path. This way, after the reception of the success message
the application source node is allowed to start the transmission
of its flows. On the other hand, if the admission control check-
ing fails at a switch, the pre-reservation step stops and the switch
sends to the source node a reply reject message that will release
all the pre-reserved resources. This way, the RT channel can not
be created.

4.1 Protocol Model

In order to validate the correctness of the protocol described
above, the Uppaal [2] modeling tool was used. Three state ma-
chines have been considered which model three existing ele-
ments in the network, namely senders, switches and receivers.

The trigger occurs when the source node transmits an RT
channel request message to the first switch, then goes to send-
ing request state and waits to receive a success or a reject mes-
sage. When a switch gets a request, after checking the feasi-
bility/schedulability and according to its result (true or false),
it goes to Accept Forward Request or Reject Request. In case
of accepting the request and being the last switch, it goes to
Back Success Allocate and sends success to its previous node. If
it is not the last switch, it forwards the request to the next switch
by sending a sw request. In case of rejection, the backwarding
reject message continues until it reaches the sender. The model
of the reservation protocol is shown in Figure 2. Using the Up-
paal model checker, several features of the protocol were proven,
such as its correctness, absence of deadlocks and its guaranteed
end in one of two possible states (accept/foward the request or
reject the request).

Figure 2: Switch Model in Uppaal.

5 Timing Analysis

In order to properly configure the servers in the switches such
that they can guarantee timing requirements to be met, we have
looked into timing analysis of messages sent in the hierarchical
architecture of FTT-enabled Ethernet switches. Hence, in this
section we address issues related with the timing analysis con-
sidering the hierarchical structure of switches presented above.

Consider a request of an RT channel (RTCi) characterized
as in (1), where Ci is the maximum transmission time, Tmiti
represents the minimum interarrival time, Di is the associated
deadline or end-to-end timing requirement, Srci and Dsti is the

respective source and destination node and SPi =
{

s1
i , .., s

ki
i

}
is the set of switches in the path between the source and the
destination node. Hence, an RT channel RTCi is characterized
as follows

RTCi = (Ci, Tmiti, Di, Srci, Dsti, SPi) , i = 1..NRTC (1)

When establishing a flow of messages stretching over a set
of switches, the summation of the worst case transmission time
wctt

s
ji
i

associated to RTCi in each switch sji

i should be less
than or equal to the corresponding end-to-end deadline Di.
Hence, the following must hold

k∑
j=1

wctt
s

ji
i
≤ Di (2)

and the following question should be considered: how does each
switch sji

i that will handle a part of the RT channel (RTCi) de-
fine its corresponding server parameters (capacity and period)
such that (2) is respected? There are several answers to this
question, resulting in a more or less complex RT channel es-
tablishment behavior. One solution is that each switch tries to
find proper server parameters that minimize its corresponding
server’s required network bandwidth while maintaining the cor-
rectness of (2). However, this solution can result in a fairly
complex problem to solve, as the overall end-to-end timing re-
quirement has to be fulfilled by the sequence of servers involved
in the transmission of messages belonging to one flow. By al-
lowing servers to locally minimize impact in terms of required
network bandwidth may impose a much higher (than optimal)
network bandwidth requirement at another switch. A less com-
plex solution to the problem is to divide the deadline Di by the
number of switches (ki) in the path that the flow has to traverse
as in [3]. However, in this solution each switch need the com-
plete view of the network architecture in order to know the exact
number of switches in the path. This aspect is achieved with a
static configuration of the network, which is acceptable in some
industrial communications or with protocol to discover the net-
work architecture. On the other hand, this approach can reject
a stream although the end-to-end delay meets the deadline (Di),
since if only one congested node misses the partitioned deadline,
then the flow will be rejected. To overcome this limitation, we
propose to study another approach. If one node misses the par-
titioned deadline, then it will compute its best effort delay and
the difference to the partitioned deadline will be subtracted by
the flowing nodes in the path and transmitted to them through
the request message. In our work we are considering these ap-
proaches, as we intend to investigate them from the perspective
of runtime complexity as well as success ratio when it comes to
establishment of flows.

6 Conclusions

The integration of flow management with hierarchical server-
based scheduling (originally meant for CPU scheduling) has
been tested in the network domain, however just in a small net-
work with a single switch. Therefore, in this work-in-progress
paper we address the extension of this approach to networks
with multiple switches. Particulary, this paper presents a pre-
liminary work on a protocol for bandwidth reservation, allowing
for the transmission of traffic flows with real-time guarantees
using server-based scheduling techniques implemented in the
switches. This protocol can be improved with an efficient pro-
cess to handle concurrent requests, always assigning available
resources to requests intended for higher priority flows. More-
over, a timing analysis is introduced and discussed. Particulary,
the paper discusses some solutions to find servers parameters
for all servers that will handle a particular RT channel. This pa-
per contains mostly preliminary results that will be developed,
analyzed and tested, in order to show its correctness and perfor-
mance. Moreover, this protocol can be generalized and applied
to other switches, since they provide the enumerated features
above.

References

[1] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl. Switched
Real-Time Ethernet with Earliest Deadline First Scheduling - Pro-
tocols and Traffic Handling. In 10th International Workshop on
Parallel and Distributed Real-Time Systems, 2002.

[2] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, Oct. 1997.

[3] P. Pedreiras and L. Almeida. Message Routing in FTT multi-
segment networks: the Isochronous Approach. In 12th IEEE Work-
shop on Parallel and Distributed Real-Time Systems, April 2004.

[4] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and L. Almeida.
Designing a Costumized Ethernet Switch for Safe Hard Real-Time
Communication. In 7th IEEE Workshop on Factory Communica-
tion Systems, May 2008.

[5] R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira,
L. Almeida, and T. Nolte. Flexible, Efficient and Robust Real-Time
Communication with Server-based Ethernet Switching. In 8th
IEEE Workshop on Factory Communication Systems, May 2010.

[6] R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira,
L. Almeida, and T. Nolte. Improving the efficiency of Ethernet
switches for real-time communication. In 1st International Work-
shop on Adaptive Resource Management, April 2010.

[7] S. Varadarajan and T. Chiueh. EtheReal: A Host-Transparent Real-
Time Fast Ethernet Switch. In International Conference on Net-
work Protocols, October 1998.

[8] M. Zhang, J. Shi, T. Zhang, and Y. Hu. Hard Real-Time Com-
munication over Multi-hop Switched Ethernet. In International
Conference on Networking, Architecture, and Storage, 2008.

