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Abstract

The FTT-enabled (Flexible Time-Triggered) Ethernet
Switch provides flow-based dynamic scheduling that allows
to handle bursty traffic in a bandwidth efficient way. For
that, this switch uses adaptive resource-reservation, associ-
ating servers to flows or groups of flows. This way, flows
have a guaranteed, but bounded, access to the communi-
cation resources. These servers can take up a composi-
tional multi-level hierarchy and they can be adapted on-line
to make a better use of the available bandwidth. To as-
sure a continued real-time behavior, the FTT-enabled Eth-
ernet Switch integrates an admission control mechanism,
which screens all adaptation and/or reconfiguration re-
quests. Whenever such requests may compromise the flow
timeliness or exceed the available memory, they are re-
jected. This paper focuses on the flow timeliness verifica-
tion, only, providing a response-time based schedulability
analysis that permits assessing the schedulability of a hier-
archical composition of servers and flows. 1

1 Introduction

Many current embedded applications are complex enti-
ties structured in components and usually assuming a hier-
archical composition. However, these applications can suf-
fer limitations in accessing resources due to lack of frame-
works that provide adequate resource access control in such
complex systems. For example, in the network domain, in-
tegrating different applications with different communica-
tion requirements under real-time constraints can generate
problems of resource allocation (bandwidth) and temporal
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isolation between streams or across applications. One re-
cent paradigm that favors the development of frameworks
to support hierarchical structures is component-based de-
sign in which applications are built by composing diverse
components developed separately. The benefits range from
reduction of design complexity to more efficient resource
sharing, satisfying individual service requirements of each
component and enforcing mutual temporal isolation.

Architectures based on servers that act as containers in
the temporal domain have been recognized as an effective
means to enable such kind of resource sharing [1] and they
can be the basis for resource partioning and virtualization,
supporting the separation between the applications and the
hardware platform on which they will execute. Following
this trend, the FTT-enabled (Flexible Time-Triggered) Eth-
ernet Switch [2] provides a framework to carry out hierar-
chical composition of servers that divides the network re-
source in an efficient way and allows an easy and natural
mapping of the applications onto the network. Moreover,
the use of servers for flow management allows handling
heterogeneous kinds of traffic with arbitrary arrival patterns
and with temporal isolation.

This paper presents an extension of previous work in
this framework, particularly that reported in [3], which de-
fined an adaptation and reconfiguration protocol that al-
lowed adding, removing and modifying servers and the as-
sociated asynchronous flows. An on-line admission control
using a light utilization-based schedulability analysis en-
forced continued timeliness even during changes. The traf-
fic scheduling followed the blocking-free non-preemptive
model, which applies when the traffic is scheduled in cy-
cles, within partitions, and before the start of the respective
partition (or window), adhering strictly to the partition dura-
tion. This implies one aspect, there is an extra delay since an
arriving packet might have to wait up to one cycle to be con-
sidered by the scheduler for possible transmission. An al-
ternative that improves the latency of the switch is to enable
the scheduling during the partition, executing it whenever a
packet arrives. In this case, the previous analysis does not



hold and the blocking caused by the transmission of non-
preemptive packets of lower priority servers must be taken
into account. Therefore, this paper presents a schedulability
analysis based on response time for a multi-level hierarchi-
cal server composition that handles the asynchronous flows
within the FTT framework and considers the blocking re-
ferred above.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of schedulability analysis for hi-
erarchical scheduling frameworks. Section 3 introduces the
basics of the FTT-enabled Ethernet Switch and describes its
integration with the server-based traffic scheduling. Sec-
tion 4 presents the schedulability analysis and an algorithm
for determining the response time. Finally, Section 5 con-
cludes the paper and addresses future work.

2 Related work

The use of servers in networking is common, being the
leaky bucket the most well-known. The leaky-bucket is,
in fact, part of a general servers category called traffic
shapers [4], which have the purpose of limiting the amount
of traffic that a node can submit to the network within a
given time window, bounding the node burstiness. These
servers use techniques similar to those used by CPU servers,
based on capacity that is eventually replenished.

Particularly regarding Real-Time Ethernet (RTE) proto-
cols, some very limited forms of server-based traffic han-
dling can also be found. Some protocols enforce periodic
communication cycles with reserved windows for different
traffic classes (e.g. PROFINET-IRT [5] and Ethernet Pow-
erlink [6]). This is a trivial composition of several PS that
results in an inefficient use of the network bandwidth. Other
protocols, such as [4], implement traffic shapers in the end
nodes that behave similarly to a DS. However, due to in-
frastructural limitations, none of these protocols supports
arbitrary server policies nor their hierarchical composition
and dynamic adaptation or creation/removal.

Another related area, despite typically considering pre-
emptive task scheduling, is that of general hierarchical
scheduling frameworks (HFS). Deng and Liu [7] began
proposing two levels HFS for open systems, where sub-
systems may be developed and validated independently.
Kuo and Li [8] introduce for such two levels a schedula-
bility analysis based on Fixed Priority Scheduling (FPS)
with a global scheduler. Shin and Lee [9] present a generic
scheduling interface model in order to construct hierarchi-
cal scheduling frameworks. Almeida and Pedreiras [10]
present a response time analysis for the periodic server
model and address the problem of designing a server to ful-
fill the application constraints. Arvind et al. [11] generalize
the periodic resource model for compositional analysis of
hierarchical scheduling frameworks.

Finally, another related area is that of synchronization
protocols in HFS. For example, SIRAP [12] addresses CPU
resource sharing among several subsystems that execute
within servers and it proposes inserting idle-time (iit) when-
ever the remaining capacity is not enough to execute an ac-
cess to a shared resource. However, only two level HFS are
addressed, while in this paper we seek explicitly the support
to multi-level HFS.

3 FTT-enabled Ethernet Switch

The FTT-enabled Ethernet Switch was created in the
scope of FTT paradigm [13]. The FTT paradigm is a mas-
ter multi-slave communication protocol, where a Master
node coordinates the transmissions of other nodes (Slaves)
by means of the periodic transmission of a Trigger Mes-
sage (TM) that contains the schedule for a fixed-duration
time slot, designated Elementary Cycle (EC) (Figure 1).
The communication is organized in an infinite succession
of such Elementary Cycles (ECs).

The FTT framework defines three traffic classes: 1) pe-
riodic real-time messages triggered by the master (referred
to as synchronous since their transmission is synchronized
with the master traffic scheduler); 2) aperiodic or sporadic
real-time traffic, autonomously triggered by the nodes; and
3) non real-time traffic (classes 2 and 3 are referred to as
asynchronous). The EC is organized in two windows, syn-
chronous and asynchronous, which convey the correspond-
ing traffic classes.

Figure 1: Elementary Cycles

At the begining of each EC the switch broadcasts the
TM to all slave nodes, identifying which messages should
be transmitted. Synchronous messages are always polled
by the TM. In the particular case of the FTT-Enabled Eth-
ernet Switch, no polling for the asynchronous traffic is nec-
essary since the switch is aware of the EC structure (Fig-
ure 2) and has a complete control of the message forward-
ing procedure. Therefore, the asynchronous messages may
be sent by the respective sources at arbitrary instants since
the switch is able to queue them in dedicated memory pools
and transmit them to the respective destinations only during
the asynchronous windows. Appropriate scheduling mech-
anisms, e.g. servers, may be used to schedule the queued
asynchronous messages.

The autonomous confinement of messages by the FTT-
enabled Ethernet Switch is one of the distinctive features



of this protocol with respect to its predecessors, namely the
FTT-SE protocol. This latter protocol relies on Commercial
Of-The-Shelf (COTS) Ethernet switches and thus all nodes
have to comply with the protocol, i.e., have to integrate a
specific device driver, to ensure that the message transmis-
sions occur only at adequate time instants. This is an impor-
tant limitation since legacy nodes cannot be part of the net-
work. Additionally, the management of the asynchronous
traffic is less efficient since this type of traffic has also to
be scheduled by the master node and an explicit signaling
mechanism by nodes informing the master about the ready
asynchronous traffic is required. Finally, the tight control of
the message forwarding combined with the awareness of the
message requirements also allows the switch to detect fail-
ures in the time domain, such as nodes that transmit asyn-
chronous messages at higher rates than the ones declares or
that send synchronous messages that where not scheduled
by the Master node, preventing its transmission.

Summing up, the FTT-enabled Ethernet Switch provides
the following features:

1. online admission control, dynamic QoS management
and arbitrary traffic scheduling policies;

2. high system integrity with unauthorized real-time mes-
sages being eliminated at the switch input ports;

3. asynchronous traffic autonomously triggered by the
nodes, with arbitrary arrival patterns;

4. high configurability: fully synchronous mode, ad-
justable mixed synchronous/asynchronous mode and
fully asynchronous mode;

5. a standard node can take advantage of the real-time ser-
vices simply negotiating with the switch the creation
of a server, i.e., a virtual channel (the negotiation can
even be done by a third party node);

6. a standard node can readily transmit non-real-time traf-
fic using a background server thus not interfering with
the real-time traffic.

Figure 2: FTT-enabled Ethernet Switch.

3.1 FTT EC structure as composition of servers

As mentioned above, in the FTT-enabled Ethernet
Switch the traffic is divided in synchronous and asyn-
chronous classes, associated with disjoint windows that fill
in the usable part of the EC. These windows appear once
in each EC (Figure 3) and have a bounded size (LSW and
LAW , respectively). Note that LSW correspond to an up-
per bound (the synchronous traffic may use up to LSW
in each EC) while LAW refers to a lower bound (asyn-
chronous traffic can use at least LAW in each EC), since
the asynchronous window reclaims the bandwidth not used
by the synchronous one. Using a server terminology, the
synchronous window is associated with a server character-
ized by a period TSW = TEC and a (maximum) capacity
CSW = LSW , while the asynchronous window is associ-
ated with a server with a (minimum guaranteed) capacity of
CAW = LAW and a period TAW = TEC . Note that LEC,
LSW and LAW are FTT configuration parameters that can
be tuned to suit the global application needs.

Figure 3: Server Hierarchy.

3.2 Hierarchical Server Composition in the scope
of the FTT-enabled Ethernet Switch

In recent work [14] [13], it was proposed to integrate
hierarchical server composition on the FTT framework to
manage the asynchronous traffic. As illustrated in Figure 3,
asynchronous message streams (or streams, for short) are
handled by servers. On its hand servers may also depend
on other servers. Each server should have enough resources
to handle its childs, should they be streams or other servers.
Servers and streams are abstracted by components. At each
level a component Γyx is identified by both index y and x.
The index y identifies the level in the hierarchy and the in-
dex x identifies the component inside that level. This way,



y = 1, .., NL and x = 1, .., NCy , where NL is the max-
imum number of levels in the hierarchy and NCy is the
maximum number of components in the level y.

The underlying FTT framework puts some important
constraints on the server operation that affect the system
schedulability, namely: 1) Ethernet does not permit packet
preemption thus preemption is not allowed. Consequently,
packets of high priority components may be blocked by on-
going transmissions of lower priority ones. 2) Overruns are
not allowed by design, since the capacity is strictly enforced
(the switch does not initiate a message transmission that
does not fit in the remaining capacity). The combination
of 1) and 2) results in a potential appearance of idle time
at the end of each server instance, whenever the remain-
ing capacity is not enough to transmit the following queued
packet. Despite negative from the schedulability point of
view, this modus operandi enforces a strict temporal isola-
tion between all components all the way through the top of
the hierarchy. Thus, ECs are completely regular and the TM
does not suffer any interference from packets managed by
server components inside the asynchronous window.

4 Schedulability analysis

Assuring a continued real-time behavior requires the ex-
ecution of an admission control procedure every time the
message set is changed. In the basis of this admission con-
trol procedure there is a schedulabilty test. In [3] it is pre-
sented an on-line admission control using a light utilization-
based schedulability analysis. However, that analysis is
based on the blocking-free non-preemptive model, which re-
quires that the traffic has to be scheduled in cyclic fashion,
within partitions, and before the start of the respective par-
tition (or window). This paper removes such dependency,
supporting an unrestricted activation model, i.e. streams en-
ter the scheduling process immediately after being received
by the switch. Although more complex, this operation mode
reduces the stream forwarding latency, which is an impor-
tant merit factor in many application scenarios.

4.1 Traffic and resource model

The asynchronous streams are at the end of the hierarchy
( Figure 3) and they are characterized in (1) through the spo-
radic real-time model, whereCyx

is the maximum transmis-
sion time and Tmityx

represents the respective minimum
interarrival time. Mmaxyx

and Mminyx
is the transmis-

sion time of the largest and smallest packet, respectively,
transmitted by this stream. Pyx identifies the parent server,
i.e, the server to which the stream is connected to and RTyx

its computed response time.

ASyx
= (Cyx

, Tmityx
,Mmaxyx

,Mminyx
, Pyx

, RTyx
) (1)

On the other hand, inside the asynchronous window the
servers (components) assume a hierarchical composition
with multi-level, forming several branches. The individual
server Srvyx (2) is characterized by its capacity Cyx , its re-
plenishment period Tyx

, and a few figures extracted from
the set of children components, either servers or streams,
namely the maximum and minimum packet transmission
times Mmaxyx

and Mminyx
respectively. Moreover, the

Srvyx is characterized by a parent server Pyx and its com-
puted response time RTyx . Note that despite the similarity
between the characterization of servers and streams, there
is a fundamental difference since the stream implies actual
transmission time that uses the capacity of the respective
server.

Srvyx = (Cyx , Tyx ,Mmaxyx ,Mminyx , Pyx , RTyx) (2)

4.2 Schedulability algorithm

As referred before, the servers capacities are strictly
enforced and overruns, e.g., caused by a non-preemptive
packet transmission that extends beyond the exhaustion of
the respective server capacity, are not allowed. This is
avoided by inserting idle-time (iit), called self-blocking in
the scope of SIRAP [12], whenever the remaining server
capacity is not enough for the transmission of a full packet.
This way, the remaining capacity is wasted and the pend-
ing transmission is delayed for successive server instances
when enough capacity is available (Figure 4). Therefore,
the maximum inserted idle-time (iit) that a server compo-
nent Γyx

can suffer is equal to the maximum packet trans-
mission time managed by this server (Mmaxyx ). On the
other hand, Mmaxyx also allows knowing which is the
maximum blocking caused by the respective component
Γyx

to the higher priority components in the same branch
and in the same level. Moreover, the Mminyx

is used to
know the maximum memory required in each branch, but
this subject is out of the scope in this paper. This way, be-
fore performing any change to the message set it is nec-
essary to assess its impact in the parameters Mmax and
Mmin along the hierarchy. Therefore, the schedulabil-
ity algorithm presented in this section is executed in two
phases.

4.2.1 Schedulability algorithm - first phase

The first phase of the algorithm simulates the requested
change in the hierarchy and by going from the bottom to
the top aims to find the Mmax and Mmin packet trans-
mission time in each branch. This means, for instance, at
the end of this phase, the component that manages the asyn-
chronous window Γ11 will have the maximum (Mmax) and



Figure 4: Inserting idle-time (iit) to enforce servers capaci-
ties

the minimum (Mmin) packet transmission time among all
the asynchronous streams transmitted in that window.

Example. As an example, consider the compo-
nents shown in Figure 3. Assume that the streams
have the following Mmax and Mmin, respec-
tively: Γ33(120000, 8000), Γ34(121000, 8000),
Γ41(117000, 8000), Γ42(118000, 8000),
Γ43(119000, 8000). Given such scenario, after the
first phase of the schedulability algorithm, the servers
(components) in the hierarchy inherit the maximum
Mmax and the minimum Mmin of their children thus
resulting in Γ31(118000, 8000), Γ32(119000, 8000),
Γ21(119000, 8000), Γ22(121000, 8000), and finally
Γ11(121000, 8000).

4.2.2 Schedulability algorithm - second phase

The second phase consists in verifying, from the top to the
bottom of the hierarchy, the schedulability of each compo-
nent and consequently the schedulability of the whole sys-
tem. For this purpose, a local schedulability analysis under
FPS, presented in [9], is used:

∀Γyx∃t : 0 < t ≤ Tyx , rbfyx(t) ≤ sbfPyx
(t), (3)

y = 2..NL and x = 1..NCy,

where, rbfyx
(t) denotes the request bound function of the

component Γyx
that, for each instant t, quantifies the max-

imum load submitted to the parent component Pyx
by the

component itself together with interference of its high pri-
ority components and also together with blocking of low
priority components. On the other hand, sbfPyx

(t) is the
supply bound function associated to the parent component
of Γyx

that computes the minimum bandwidth supply pro-
vided to its children, in each instant t. Consequently, the
worst case response time of a component Γyx is given by
the first intersection between the rbfyx and sbfyx , and it is
described as follows:

RTyx
= shortest t∗ : rbfyx

(t∗) = sbfPyx
(t∗) (4)

After a suitable schedulability analysis, the requested

change is introduced in the hierarchical structure and the
simulated configuration performed in the first phase takes
effect. On the other hand, if the schedulability analysis fails
the old configuration remains unchanged.

Supply bound function. In order to define the sbfyx(t),
we use the Explicit Deadline Periodic (EDP) resource
model [11] that generalizes the periodic resource model for
compositional analysis of hierarchical scheduling frame-
works. An EDP resource model is given by Ω = (Π,Θ,∆),
where Θ is the units of the resource within ∆ time units
(deadline) and with period Π of repetition. This way,
mapping to our framework, a component is defined as
Γyx

= (Πyx
,Θyx

,∆yx
) = (Tyx

, Cyx
, RTPyx

), where
the RTPyx

is the response time of the parent component.
However, for the first component in the hierarchy (Γ11),
the asynchronous window, we consider the ∆ equal to
the capacity of the window (C11 ), resulting that Γ11 =
(Π11 ,Θ11 ,∆11) = (T11 , C11 , C11). Therefore, according
to the EDP model, and assuming the same notation, the
sbfyx

(t) is defined as follows:

sbfΓyx
(t) =

 bΘyx + max{0, t− a− bΠyx},
t ≥ ∆yx −Θyx

0, otherwise
(5)

where a = (Πyx
+ ∆yx

− 2Θyx
) and b = b(t − (∆yx

−
Θyx

))/Πyx
c. Moreover, Πyx

= Tyx
, Θyx

= Cyx
, ∆yx

=
Cyx when y = 1 or ∆yx = RTPyx

when y > 1.
Request bound function. The rbfyx(t) of a component

Γyx
is given by the following equation, similarly to the anal-

ysis of SIRAP [12]:

rbfyx
(t) = Cyx

+ ISPyx
(t) + IHyx

(t) + ILyx
, (6)

ISPyx
(t) =

⌈
t+MmaxPyx

TPyx

⌉
×MmaxPyx

, (7)

IHyx
(t) =

∑
Γyj
∈hp(yx)

⌈
t

Tyj

⌉
× Cyj

(8)

ILyx
= max

Γyj
∈lp(yx)

Mmaxyj
, (9)

where ISPyx
(t) is the maximum inserted idle-time (self-

blocking) from the parent component and it is modeled
by a virtual component of high priority with a period
TPyx

, a capacity equal to XmaxPyx
and a phase equal to

XmaxPyx
. IHyx

(t) is the interference from the compo-
nents with higher priority in the same level and in the same
branch, ILyx is the blocking from components with lower
priority.

Despite the similarities with the analysis in [12], this new
approach introduces the impact of our multi-level hierarchi-



cal framework in which the impact of the inserted idle-time
in the child components is accounted for in IS(t).

4.3 Computing the response time

The response time of each component Γyx
(with y > 1)

can be obtained solving iteratively equation (4), and making
use of the inverse of the supply bound function as follows:

RTyx
= earliest t∗ : t∗ = sbfinv

Pyx
(rbfyx

(t∗)) (10)

A simpler but less tight upper bound for the response
time of each component can be obtained considering a lin-
ear lower bound to the supply bound function, also pro-
posed in [9]. This linear lower bound is depicted in Fig-
ure 5 and results in sbf lbyx

= (t−(Πyx
−∆yx

−2Θyx
))α.

Therefore the response time upper bound (RT upyx
) can be

obtained replacing sbfyx
in (10) by sbf lbyx

.

Figure 5: Response time

5 Conclusions

Component-based design is a powerful design paradigm
to address the growing complexity of embedded applica-
tions. Moreover, server-based scheduling is an effective
means to deploy component-based applications, particu-
larly when organized in a hierarchical framework. In this
paper, we addressed the case of multi-level hierarchical
server-based scheduling within Ethernet switches using a
specific switch, namely the FTT-enabled Ethernet Switch.
We have developed a schedulability analysis that allows ver-
ifying whether a given composition of servers is schedula-
ble. This analysis applies to cases in which servers might
experience blocking caused by on-going packet transmis-
sions associated to lower priority servers, and it comple-
ments the work in [3] that applies when such blocking is
eliminated using the blocking-free non-preemptive model.
This latter approach, however, presents a longer switching
latency, which might not be desirable. A full comparisons
and analysis of these two approaches will be carried out in
future work.
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