Improving the efficiency of Ethernet switches for real-time communication

R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira

DETI/IEETA
Universidade de Aveiro, Portugal

{rsantos,alexandrevieira,marau,pbrp,arnaldo } @ua.pt

Luis Almeida
IEETA - DEEC / University of Porto
4200-465 Porto, Portugal
lda@fe.up.pt

Thomas Nolte
MRTC / Milardalen University
Vasteras, Sweden
thomas.nolte @mdh.se

Abstract

The growth of connectivity in general, including in net-
worked embedded systems, is continuously increasing the
amount and diversity of information that needs being ex-
changed among nodes. The arrival pattern of such traf-
fic is also frequently bursty and jittered, negatively impact-
ing the system performance. In this paper we focus on
switched Ethernet and we aim at providing flow-based dy-
namic scheduling that allows handling bursty and jittered
traffic in a bandwidth efficient way. For that we use adaptive
resource-reservation, associating servers to flows or groups
of flows that contain the impact that a misbehaving flow can
have. These servers can be adapted on-line to make a better
use of the available bandwidth. !

1 Introduction

The trend towards integration of all kinds of gadgets, de-
vices, machines, systems, etc, is continuously generating
more traffic and with predominance of arbitrary arrival pat-
terns with occasional peaks. This trend is clear in the In-
ternet [1] where traffic peaks are being handled by resource
over-provisioning even if the average load remains way be-
low the network full capacity. This situation is mainly
caused by inefficient traffic management in conventional
routers, based on handling packets individually. For exam-
ple, when momentarily overloaded, a router discards pack-
ets somewhat randomly, potentially causing strong through-

IThis work was partially supported by the iLAND project, call 2008-
1 of the EU ARTEMIS JU Programme, by the European Community
through the ICT NoE 214373 ArtistDesign and by the Portuguese Govern-
ment through the FCT project HaRTES - PTDC/EEA-ACR/73307/2006
and Ph.D. grant - SFRH/BD/32814/2006.

put penalties, e.g., when several TCP/IP transmissions are
affected.

To improve efficiency for the same throughput and
handle peaks with less resources, Internet specialists are
proposing flow management. The first packet in a flow is
handled as normal but it is identified, characterized and its
forwarding parameters are stored in a hash table. The fol-
lowing packets of each flow are then quickly dispatched.
When a router is overloaded, it adjusts each flow rate at its
input according to the total available bandwidth. This can
be done selectively discarding packets of some flows while
protecting the throughput of other ones that have higher pri-
ority. In summary, this approach decreases and stabilizes
the packet forwarding time, reduces packet losses and over-
all improves the network bandwidth utilization.

Shifting the focus to real-time networks we often find
the same situation in which bandwidth is over-provisioned
to guarantee upper limits on worst-case network latencies
leading to an overall poor efficiency in resource usage. This
has been particularly true in real-time switched Ethernet
networks with aperiodic/sporadic traffic where the aggre-
gated throughput is frequently strangled in order to enforce
determinism (e.g., Ethernet Power Link and Ethernet/IP).

The time-triggered paradigm is a possible solution (e.g.
TTEthernet and PROFINET-IRT), which is particularly ef-
ficient with globally synchronous periodic communica-
tion that can be efficiently packed in tight schedules that
maximize bandwidth utilization. However, with aperi-
odic/sporadic flows this efficiency is lost leading to longer
response times and even unnecessary packet losses under
peak loads due to the rigidity of the periodic schedules.

Therefore, similarly to the general case referred earlier,
we need adequate flow management to achieve low re-
sponse time and deterministic peak performance with dif-
ferentiated quality of service (QoS) levels while improving

average bandwidth utilization. A scheduling paradigm that
is particularly well suited to support this flow management
is that of servers [2]. This paradigm has been recently ap-
plied to traffic scheduling in Ethernet switches particularly
using an FTT-enabled Ethernet Switch [3] [4]. In this paper,
the authors further extend such work analyzing the mecha-
nism that allows adapting and reconfiguring the servers on-
line while maintaining the negotiated QoS levels of each
flow.

The paper is organized as follows. Section 2 discusses
two particularly related frameworks, those of TTEther-
net and PROFINET-IRT, while the FTT-enabled Ethernet
Switch is briefly described in Section 3, with the imple-
mentation of the servers being addressed in Section 4. Sec-
tions 5 and 6 present the admission control algorithm and
the adaptation and reconfiguration protocol, respectively,
while Section 7 concludes the paper and points to lines of
future work.

2 Related Work

Ethernet is probably the most pervasive networking pro-
tocol, having found application in many different domains,
including the embedded systems domain where real-time
constraints abound. Specifically to support real-time com-
munication on Ethernet, several approaches were proposed.
A first class of approaches, such as traffic shapers [5] or
master-slave protocols [6], builds upon standard Ethernet
switches. Usually, these solutions require a specific layer
in the nodes network stack for accessing the real-time ser-
vices. On the other hand, most of these protocols assume
that their nodes are always well behaved and do not allow
the connection of legacy nodes, ensuring thus the robustness
of the system and the integrity of the real-time services.

On the other hand, another class of approaches uses
modified switches. TTEthernet [7] is a new scalable real-
time Ethernet platform that enables the seamless com-
munication for distributed applications. It aims at sup-
porting communication among applications with various
real-time and safety requirements (Time-Triggered, Rate-
Constrained, Best-Effort) over network. It is used for
safety-critical, fail-operational applications and audio/video
systems. The scheduling for the Time-Triggered traffic is
performed off-line by a planning tool ensuring interference-
free transmissions. Moreover, each end node imple-
ments traffic shapers to handle the Rate-Constrained class.
Schedulability of this traffic can be assessed based on the
rates and buffers sizes, which must be known a priori.

Another protocol relying on customized Ethernet
switches is PROFINET - IRT [8]. Its switches offer de-
terministic transmission through explicit bandwidth reser-
vation for the real-time data. The scheduling parameters
are configured during the setup phase and they are obtained

with a scheduling algorithm that is executed off-line. On the
other hand, this switch also allows the integration of Ether-
net standard devices whose traffic is confined in dedicated
time windows that do not interfere with the periodic traffic.

In what concerns handling traffic that exhibits burstiness
and jitter, the latter class of protocols offers a much stronger
solution since the traffic confinement is carried out directly
by the network devices, independently of the end nodes.
However, there is no bandwidth reclaiming and if a flow
is causing a transient overload in its slot, it cannot use the
bandwidth of other slots that might be underloaded at that
point. Moreover, since the definition of the communication
slots is fixed, coping with structural changes in the appli-
cation is strongly limited, for example when a given flow
needs a durable modification in the bandwidth assigned to
it, or a flow is added/removed from the set.

The solution presented in this paper targets supporting
those cases in a bandwidth efficient manner by using server-
based scheduling inside the switch and providing a structure
that allows modifying the servers on-line.

3 FTT-enabled Ethernet Switch

The FTT-enabled Ethernet Switch was created from the
Flexible Time-Triggered (FTT) paradigm [3] where the
FTT master was inserted inside the switch (Master Module
in Figure 1). The FTT protocol defines three traffic classes:
1) periodic real-time messages activated by the master (re-
ferred to as synchronous since their transmission is syn-
chronized with the periodic traffic scheduler); 2) aperiodic
or sporadic real-time traffic, autonomously activated by the
application within each node; and 3) non real-time traffic
(classes 2 and 3 are referred to as asynchronous). The syn-
chronous and asynchronous traffic are transmitted within
separate windows with the former typically having prior-
ity over the latter. The non real-time traffic is scheduled in
background, within the asynchronous window. Moreover,
the part of the synchronous window that is not used by syn-
chronous traffic is made available for the asynchronous one,
for the sake of bandwidth efficiency.

The referred windows alternate within fixed Elementary
Cycles (ECs), Figure 2. Each EC starts with one master
poll message, called Trigger Message (TM). The TM con-
tains the synchronous schedule for that particular EC and
the master never schedules more messages in an EC than
those that fit in the respective synchronous window, thus
memory overflows inside the switch are completely avoided
for such kind of traffic. On-line changes in the synchronous
message flows go through an admission control inside the
master and are taken into account by the master on-line
scheduler as soon as they are committed.

The asynchronous traffic is managed through queues in-
side the FTT-enabled Ethernet Switch and transmitted in

FTT-Enabled Switch

Master Module
(o
) 1 SRDB
SchedulerJ _/Admission Qos
Control ~ ' Manager ~ ~ |~
CgtY ¥
. Seos Y
Switching Module
TM| <« Trigger
G Message
,! .I -‘ -‘

Figure 1. FTT-enabled Ethernet Switch.

3 A

| onous

“Window

= | Synchron = | Syncl yne
= window = window Window o

Figure 2. Elementary Cycles.

the asynchronous windows (Figure 2). In the case of the
asynchronous real-time traffic, the switch regulates it by en-
forcing a minimum inter-transmission time per flow. This
allows carrying out schedulability analysis of this kind of
traffic within an on-line admission control, similarly to the
case of the synchronous one.

Summarizing, the FTT-enabled Ethernet Switch was de-
signed to provide the following advantages:

1. online admission control, dynamic quality-of-service
management and arbitrary traffic scheduling policies;

2. an increase in the system integrity with unauthorized
real-time messages being blocked at the switch input
ports;

3. the asynchronous traffic is autonomously triggered by
the nodes with arbitrary arrival patterns;

4. a standard node can take advantages of the real-time
services through a simple negotiation with the switch,
or without negotiation, the nodes can transmit as non-
real-time traffic in a best-effort way and using all band-
width left free by the synchronous and asynchronous
real-time traffic and without interfering with it;

5. it can be configured in a fully synchronous mode, just
with synchronous window, in a mixed mode using both
windows in which it is possible to configure the maxi-
mum width of the synchronous window and fully asyn-
chronous mode, i.e., with just asynchronous window.

4 Servers in the FTT-enabled Ethernet

Switch

In recent work we proposed using the scheduling flex-
ibility of the FTT-enabled Ethernet Switch to carry out
server-based traffic scheduling [4] in which case the asyn-
chronous flows, either real-time or non-real-time, are han-
dled by servers.

Two ways were considered for adding server-based
scheduling to the FTT-enabled Ethernet Switch. One so-
lution implements the admission control algorithm, the
servers structures and the scheduler inside the Master Mod-
ule, while the servers queues are left in the Switching Mod-
ule. The Master Module then periodically scans the servers
queues and updates the servers structures, directly imple-
menting the servers policy and instructing the Switching
Module of which packets of which servers should be trans-
mitted in each EC. This solution allows implementing any
desired server policy and is very scalable in the number of
servers that can be supported at the cost of a penalty in la-
tency due to the sequence of operations involved between
the reception of a packet in a server and its transmission.

Conversely, we also pursued another solution in which
the servers structures and scheduler are implemented in
hardware, within the Switching Module, just leaving the
admission control in software in the Master Module. This
way, the Master Module is invoked solely when a new
server is created, deleted or updated. Apart from these sit-
uations, server packets are completely handled in hardware
with very low latency. The negative aspect of this option
is a reduction in the flexibility concerning server policies
and scheduling because of limitations in their hardware im-
plementation. Moreover, the hardware resources needed to
implement the servers structures must be allocated from the
beginning and are limited, limiting the maximum number
of servers that can be used.

Both solutions were implemented but their actual com-
parison is out of the scope of this paper, which focuses
on the functionality needed to manage the servers creation,
deletion and adaptation at run-time, particularly the admis-
sion control and its associated schedulability analysis.

5 Admission Control

In order to make sure that the set of servers can meet their
timing requirements, i.e., that they can get their capacity
within their replenishment period when needed, an adequate
admission control is invoked before creating a new server or
updating its temporal properties. Moreover, a second test is
also performed upon server creation or adaptation in order
to test whether its memory requirements can be met.

Currently, we will consider sporadic servers, only, due to
their better performance in schedulability and latency.

5.1 Traffic and Servers Model

The server-based scheduling is implemented within the
asynchronous window with minimum duration LAW per
EC (duration E). In the case of a fully asynchronous im-
plementation, i.e., without synchronous window and even
without the TM, the asynchronous window occupies the
whole cycle, with LAW = E. However, in the general
case, LAW = E — LTM — LSW, where LT M is the
time needed to transmit the TM and LSW is the maximum
duration of the synchronous window per EC.

The asynchronous streams are characterized as in (1)
where N, is their total number, C; is the maximum trans-
mission time of stream ¢, T'mit; represents the respective
minimum interarrival time, Srv; is the server to which
stream 1 is allocated and s; its sender node. Finally, DL,

is the set {dlil, . dlif“} of k; destination links for stream 1.

AS; = (C;, Tmit;, Srv;, s, DL;), DL; = {dl} ..,dzfi} i=1..Ngs.)

On the other hand, the servers are characterized as in (2),
where Ng,., 18 the current number of servers in use. The in-
dividual server Srv; is characterized by its capacity C}, its
replenishment period 7}, and a few figures extracted from

the set {AS{ oy AST } of m; asynchronous streams allo-
J

cated to it, namely the maximum and minimum transmis-
sion times C'max; and C'min; respectively, and the set of
destination links SDL; = (J*/; DLJ.

Srv; = (C;,T;,Cmazj, Cmin;, SDL;),j = 1..Ng, (2)

Finally, note that for each destination link dl,, with p =
1..Ng; (the number of destination links) the respective asyn-
chronous window will be shared by the set ¢, of active
Servers.

t, = {Srv’l’, ..Srvfp} ,p=1..Ng 3)

5.2 Schedulability Analysis

As we have seen in the model description above, the
server Srv; will potentially execute in a number of destina-
tion (output) links (Figure 3). However, in all links where it
executes, it keeps its capacity and period. The actual mes-
sages that a server transmits in each output link at each in-
stant in time can differ, though.

Therefore, we say that a server is schedulable if and only
if it is schedulable in the set SDL; of destination links in

Input ports
AS
ol 2
i o
il H
&
P1 P2 P3 P4

Output ports

AS
|l 2
; ’
AS 5|[As
1 cll 3
o
P1 P2 P3 P4

Figure 3. Servers in the input and output links.

which it is active. The whole system is schedulable when
all servers are schedulable or, equivalently, when all desti-
nation links are schedulable.

For the sake of simplicity of implementation and speed
of execution, we propose a schedulability test based on the
utilization of the destination links, or more specifically their
asynchronous windows. Moreover, it is important to recall
that the basic transmission control mechanism does not al-
low a packet in the asynchronous window to start transmis-
sion if it cannot terminate within the window. This corre-
sponds to inserting idle-time at the end of the asynchronous
window and it is called the blocking-free non-preemptive
scheduling model. This model allows avoiding the block-
ing that otherwise the asynchronous packets would cause to
the TM, if present, and it was proposed and thoroughly an-
alyzed in [9], from where we extract the following theorem:

Theorem 1 [9]: Any exiting schedulability analysis for
fixed priorities preemptive scheduling can be used with the
blocking-free non-preemptive model if the tasks execution
times (C;) are inflated by a factor E/(F — X), where E is
the EC duration and X the maximum inserted idle time.

Moreover, we make use of another previous result con-
cerning the schedulability analysis of servers, in particularly
sporadic servers [10], from where we reproduce the follow-
ing theorem:

Theorem 2 [10]: A periodic task set with fixed priorities
that is schedulable with a task 7; is also schedulable if 7;
is replaced by a sporadic server with the same period and
execution time.

Hence, from a schedulability point of view, analyzing a
set of sporadic servers is equivalent to analyzing the schedu-

lability of a set of corresponding tasks. By putting together
both theorems, we can analyze the schedulability of one
particular destination link dl,, running a set t,, of sporadic
servers as if it was a set of fixed priority preemptive tasks
with a capacity inflated by a factor equal to E/(F — X).
In this case, X represents the total inserted idle time in
each cycle from the point of view of the asynchronous
window, including the time to transmit the TM, the syn-
chronous window and the actual inserted idle-time in the
asynchronous window itself. X can then be upper bounded
by E — LTM — LSW — CmazP = LAW — CmaaP?,
where Cmax? = masc;‘;o(Cmaxj). The inflated server
capacities in the output link di, are expressed as in 4.

C" = E/(LAW — Cmaa?) « Cj,j =1..t, (4)

Note that this result allows using any schedulability anal-
ysis for fixed priorities preemptive scheduling. In particular,
we use the Liu and Layland’s utilization bound for Rate-
Monotonic Scheduling with just the small adaptation of the
capacities as referred in 4 and use it within a fast on-line
admission control for a set of active servers in a given des-
tination link (dl,,) as follows:

s (c. LAW — CmazP
Udlp) = 3 <T7J> < Ns (21“1’ - 1) (¢> = ©)

j=0 \ 15 B

the set of ¢, active servers in dl,, is schedulable with RM
under any phasing.

5.3 Memory Analysis

The FTT-enabled Ethernet Switch currently implements
a simple but deterministic memory management based
on blocks of fixed size equal to the longest Ethernet
frame. Therefore, server Srv; in the worst case requires
MemBlk; memory blocks, given by expression 6. This
amount of memory must be available at the time of creation
or adaptation of a server to have the respective request ac-
cepted.

MemBik; = [S w ©)

Cmin;
6 Adaptation and Reconfiguration Protocol

In order to operate an FFT-enabled Ethernet Switch with
server-based scheduling it is necessary to be able to create,
delete and update servers as well as to associate streams to
servers. These operations are carried out inside the switch
and are requested by the application using special purpose

FTT messages (FTT Request messages). In order to allo-
cate streams to servers, all streams must be uniquely iden-
tified. However, note that the switch can be simultaneously
used by FTT-compliant and FTT-agnostic nodes, including
for the real-time services provided with the servers, as de-
scribed in Figure 4. Therefore, the stream identification for
each case uses different parameters. The streams from FTT-
compliant nodes are encapsulated according to the FTT pro-
tocol and identified by the Ethernet MAC destination and
source addresses and by the FTT stream identifier. On the
other hand, the streams transmitted by FTT-agnostic nodes
and encapsulated with the Internet Protocol version 4 are
identified based on the IP source and destination addresses,
source and destination ports, and transport protocol.

Moreover, note that the requests for setting up the servers
and streams of an FTT-agnostic node can be made from a
third party node. Once the proper configuration is done, the
FTT-agnostic node can communicate through the respective
link and server(s).

W oy (=]
2 |2 || : || E
Eu |[|Eu |[Fe Ea|l| Fo
BE ||2E ||mE BE|| RE
£E (|58 |[28 8| 22
g = E\l- = = :qu- = =
@ 2 2 2 2
| Application |
| UDP, TPC, ... |
| FTT | | IF |
| Etherhet 8023]

Figure 4. Communication model.

Each FTT Request triggers the admission control algo-
rithm, being the result communicated back to application
node through an FTT Reply message. Five types of FTT
Request messages (Figure 5) are defined:

e reserve a new server to manage a set of streams

e add new streams to a server

e remove streams from a server

e update the server parameters (capacity and period)
e release a running server

Each of these messages has an associated FTT Reply
message (Figure 6).

When an FTT Request message arrives at the switch,
the Switching Module identifies it (Figure 7) and sends it

Request Messages

pe
- Server reserve

- Server parameter

= Stream identifier 1

- Slream identifier N

~Type

- Add new streams

- Server identifier
= Stream identifier 1

- é'lream identifier N

- Type
- Release server
- Server identifier

- Remowve streams
= Server identifier
- Stream identifier 1

~Type
- Change server

- Server identifier

- Server parameters

- Slream identifier N

Figure 5. Request Messages.

Reply Messages
- Type - Type - Type

- Server reserve - Add new streams - Release server
= Reply = Reply =Reply

- Stream identifier 1 - Stream identifier 1

- é'lream identifier N

- Server identifier

- Slream identifier N

pe - Type
= Remove streams = Change server
- Reply - Reply
- Stream identifier 1 - Server identifier

- Slream identifier N

Figure 6. Reply Messages.

promptly to the Master Module. The requests are stored
within a FIFO queue while the Admission Control executes
one by one, at the beginning of each EC. The response
is communicated to the Switching Module that builds an
FTT Reply message and sends it back to the source node
of the request during the asynchronous window of the fol-
lowing EC. Note that this mechanism allows just one reply
per EC, thus bounding the impact of possible bursts of re-
quests. This reply message per EC is also accounted for
in the schedulability analysis of the servers in the asyn-
chronous windows, which basically corresponds to using
shorter windows.

One relevant parameter is the reactivity of this protocol
with respect to the requests. The time that it takes since a
request arrives at the switch to the time at which the respec-
tive reply is sent back to the requester (R7T'D) is shown in 7,
where NgrP is the number of requests pending inside the
Master Module. Bounding RT'D requires a careful analysis
of the application to also bound Ny P.

RTD=E+NgP+E+E+LTM+LSW (7)

After a successful admission control, the servers struc-
tures and parameters are configured. This time, however, is
neglectable when compared the RT'D latency.

Switching Module

Ad:n'i‘-.::?u Master Moduls
11T} (; FTT Reply
| I'(' | Message | -
A

| SW AW

'I >
1
L Nodo
FTT Request
Megsags | mt

- =
EC

Switching Module

M- |

Figure 7. Adaptation and reconfiguration pro-
cess.

7 Conclusion

In order to face the growing connectivity requirements,
with more abundant and diverse information to be ex-
changed, it is important to support arbitrary arrival pat-
terns in an efficient way. In this paper we focused on real-
time Ethernet networks, based on switches, to support such
trend. We realized that existing protocols are particularly
efficient with synchronous/periodic communications with
slot-based and static approaches, becoming inefficient with
aysnchronous/aperidic traffic that is characterized by arbi-
trary arrival patterns.

On the other hand, a network based on flow management
is recognized as an effective means to achieve low response
time and provide differentiated QoS levels improving aver-
age bandwidth utilization. Therefore, in order to overcome
the limitations above, the authors recently proposed inte-
grating the server-based scheduling within an FTT-enabled
Ethernet Switch. The resulting framework provides effi-
cient servers implementation, namely sporadic servers, on-
line admission control and dynamic quality-of-service man-
agement of the servers.

In this paper the authors further extended the work of in-
tegrating the server-based scheduling paradigm in an FTT-
enabled Ethernet Switch. The paper presents a solution for
the admission control algorithm considering both timeli-
ness, using previous results and based on bandwidth uti-
lization, and memory usage. Finally, the reconfiguration
and adaptation protocol is briefly described, and an up-
per bound on the reaction time to change requests in the
servers/streams structure is shown. This protocol is still un-
der development and further assessment will be carried out
in future work, including an assessment of the overhead and
efficiency of the proposed admission control and its effec-
tive integration with dynamic QoS management.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

L. Roberts, “The Internet is broken. Let’s fix it.” IEEE
Spectrum, July 2009.

C. Buttazzo, Hard Real-time Computing Systems:
Predictable Scheduling Algorithms And Applications
(Real-Time Systems Series). Santa Clara, CA, USA:
Springer-Verlag TELOS, 2004.

R. Santos, R. Marau, A. Vieira, P. Pedreiras,
A. Oliveira, and L. Almeida, “A Synthesizable Eth-
ernet Switch with Enhanced Real-Time Features,”
in The 35th Annual Conference of the IEEE Indus-
trial Electronics Society. IEEE Computer Society,
November 2009.

R. Santos, A. Vieira, R. Marau, P. Pedreiras,
A. Oliveira, L. Almeida, and T. Nolte, “Implement-
ing Server-based Communications within Ethernet
Switches,” in Proceedings of the 2nd Workshop on
Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS’09) in conjunction with the
30th IEEE International Real-Time Systems Sympo-
sium (RTSS’09). Washington DC - USA:, December
2009.

J. Loeser and H. Haertig, “Low-Latency Hard Real-
Time Communication over Switched Ethernet,” in
ECRTS ’04: Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems, Catania, Sicily, Italy,
2004, pp. 13-22.

R. Marau, P. Pedreiras, and L. Almeida, “Enhanc-
ing Real-Time Communication over COTS Ethernet
Switches,” in WFCS 06 - The 6th IEEE Workshop on
Factory Communication Systems. Turin - Italy: IEEE
Computer Society, June 2006.

W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and
S. Varadarajan, “TTEthernet Dataflow Concept,” in
NCA ’09: Proceedings of the 2009 Eighth IEEE Inter-
national Symposium on Network Computing and Ap-
plications. Cambridge, MA USA: IEEE Computer
Society, 2009, pp. 319-322.

PROFInet, “Real-Time PROFInet IRT,”
http://www.profibus.com/pn, December 2007.

L. Almeida and J. Fonseca, “Analysis of a Simple
Model for Non-Preemptive Blocking-Free Schedul-
ing,” in ECRTS ’01: Proceedings of the 13th Euromi-
cro Conference on Real-Time Systems. Delft, The
Netherlands: IEEE Computer Society, 2001, p. 233.

[10] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task

scheduling for hard-real-time systems.” Journal of
Real-Time Systems, 1989.

