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Abstract 

The information exchanged in Networked Embedded 
Systems is steadily increasing in quantity, size, complex­
ity and heterogeneity, with growing requirements for ar­
bitrary arrival patterns and guaranteed QoS. One of the 
networking protocols that is becoming more common in 
such systems is Ethernet and its real-time Ethernet vari­
ants. However, they hardly support all the referred require­
ments in an efficient manner since they either favour deter­
minism or throughput, but not both. A potential solution 
recently proposed by the authors is the Server-SE proto­
col that uses servers to confine traffic associated to specific 
applications or subsystems. Such an approach is dynam­
ically reconfigurable and adaptive, being more bandwidth 
efficient while providing compos ability in the time domain. 
This paper proposes integrating the servers inside the Eth­
ernet switch, boosting both the flexibility and the robustness 
of Server-SE, allowing, for example, the seamless connec­
tion of any Ethernet node. The switch is an FIT-enabled 
Ethernet Switch and the paper discusses two specific ways 
of integrating the servers, namely in software or in hard­
ware. These options are described and compared analyti­
cally and experimentally. The former favours flexibility in 
the servers design and management while the latter pro­
vides lower latency. 

1. Introduction 

There has been a continued steep increase in the com­
plexity, quantity and heterogeneity of the data exchanged 
between nodes in Networked Embedded Systems (NES). 
From data originated in simple 10 bit ADCs to multi­
kilobyte variable bit-rate multimedia traffic. Moreover, 
many NES are frequently subject to real-time constraints 
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that extend to the respective information exchanges, requir­
ing support from a real-time network. One network tech­
nology that became widely used in these systems is Eth­
ernet [1], which conquered the office automation market 
long ago, entered massively into the factory automation and 
large embedded systems domains and is now being consid­
ered for mass market domains such as the automotive one. 
However, Ethernet was not originally developed to meet the 
requirements of NES, namely in what concerns key aspects 
such as predictability and timeliness. These limitations 
led to the development of the so-called Real-Time Ether­
net (RTE) protocols, but even these still reveal difficulties 
in handling the variety of requirements that current NES 
pose in an efficient manner, particularly arbitrary arrival 
patterns and widely different QoS requirements. Typically, 
such protocols were either tuned to achieve high bandwidth 
efficiency or strict timeliness guarantees but not both. 

Standard Ethernet switches are typically designed for 
high throughput Internet access or file sharing, presenting 
limitations in what concerns real-time performance, with 
potentially long queueing delays or even packet losses re­
sulting from limited scheduling capabilities (up to 8 prior­
itized FIFO queues, only) and a generalized lack of mem­
ory partitioning. The techniques proposed to overcome 
such limitations range from shaping the traffic submitted 
to the switch [2] to limiting that traffic by application de­
sign [3], adding transmission control features [4] and pro­
viding more efficient scheduling policies and admission 
control [5] [6] [7]. Amongst the most proeminent market 
contenders we can find EtherCAT [4], PROFINET [6], Eth­
ernetlIP [3] and TTEthernet [7]. 

One of the main challenges in designing current NES is 
managing the ever growing level of complexity [8] [9] [10]. 
Component-oriented design methodologies, which pro­
vide compos ability, are particularly well suited since they 
support safe resource sharing, allowing different compo­
nents/subsystems to be developed separately and later in­
tegrated in the system. On the other hand, server-based 
scheduling is recognized as an effective means to enable 
such kind of resource sharing [11] and it can be the ba­
sis for resource partitioning and virtualization, supporting 



the separation between the applications software architec­
ture and the hardware platfonn on which they will execute. 
Such separation has the potential to bring significant cost 
reductions at the system level and is currently the objective 
of active frameworks such as AUTOSAR [12] in the auto­
motive domain, IMA [13] in avionics or IEC61499 [14] in 
industrial automation. 

However, the support for network partitions by current 
RTE protocols suffers from limitations imposed by spe­
cific medium access control and queue management poli­
cies within network devices and protocol stacks that do 
not support efficient server-based traffic scheduling poli­
cies. Moreover, network partitions are typically static, as 
in TDMA-based approaches, and do not adapt to variations 
in number of active components in the system or in their 
requirements. Additionally, the respect for network parti­
tions is frequently delegated to the end nodes, which must 
execute a specific layer on top of the general network in­
terface, typically a traffic shaper, which is a limitation for 
the integration of legacy systems and other general purpose 
systems that do not originally include such access control 
layers. 

To address some of these limitations, the authors pre­
viously proposed the Server-SE protocol [15], building on 
top of FTT-SE [16] to support arbitrary server scheduling 
policies and servers hierarchical composition in a dynami­
cally but deterministic reconfigurable way. More recently, 
the authors proposed integrating server scheduling tech­
niques inside an FTT-enabled Ethernet Switch [17]. The re­
sulting platform preserves the properties of Server-SE, par­
ticularly the support for heterogeneous traffic classes (peri­
odic, aperiodic; real-time, non-real-time), arbitrary (server) 
scheduling policies and dynamic adaptation and reconfig­
uration. In addition, operating at layer 2 allows provid­
ing highly efficient and robust network partitions that cope 
with arbitrary traffic arrival patterns, thus allowing, for ex­
ample, the seamless connection of general purpose nodes, 
which have no specific adaptation, without affecting the 
QoS guarantees provided by the user-defined servers that 
reside in the switch. A proof-of-concept implementation 
was described in [18]. 

In this paper we explore two possible options for inte­
grating the servers scheduling unit inside the FTT-enabled 
Ethernet Switch architecture, namely in software, in the 
FTT Master Module, or in hardware, in the Switching 
Module. This design option has important consequences 
in terms of responsiveness, flexibility, hardware complex­
ity and global system schedulability. This paper presents 
both architectural solutions, analyzes them and compares 
them with respect to the referred parameters, both analyti­
cally and experimentally using prototype implementations. 

The remainder of the paper is organized as follows: 
Section 2 presents an overview of related work; Sec­
tion 3 presents a brief introduction to FTT-SE and the FTT­
enabled Switch; Section 4 describes the server-based traf­
fic scheduling implementation in software and hardware 
and discusses their advantages and disadvantages; Sec­
tion 5 presents a prototype implementation of both archi­
tectures as well as experimental results and, finally, Sec-

tion 6 presents the conclusions. 

2. Related work 

2.1. Introduction to servers 

The server mechanisms have been introduced in the con­
text of CPU scheduling as a means to handle hybrid task 
sets composed by periodic and aperiodic tasks, with the ob­
jective of limiting the interference that each aperiodic task 
can have on other tasks (both periodic or aperiodic) while 
providing minimum levels of service to the aperiodic tasks. 
On the other hand, a server can be defined as an entity that 
controls the access to a given resource by a task or set of 
tasks. The server is the entity that is scheduled and ape­
riodic tasks are executed on its behalf. Thus, by giving 
appropriate levels of priority and service to the servers, the 
access to the resources managed by them can be strictly 
controlled. 

Many server types are described in the literature, both 
for fixed and dynamic priority systems. Amongst the most 
well known fixed-priority servers we can find the Polling 
Server (PS), the Deferrable Server (DS) and the Sporadic 
Server (SS) [19]. The PS and the DS operate in a similar 
way, being characterized by a period and a capacity, also 
known as budget, that is replenished every period. They 
differ when no aperiodic tasks are pending, with the PS sus­
pending itself until the beginning of the next period while 
the DS preserves its capacity and can execute until the end 
of the period. For this reason, the DS has a better average 
response time to aperiodic requests but at the cost of a re­
duced system schedulability. The SS can be regarded as an 
improvement over both the PS and DS since it can execute 
at any time, if there is capacity available (as the DS), but 
without penalizing the system schedulability. To illustrate 
the server concept, Figure 1 shows the operation of a PS 
(s) with intennediate priority between two periodic tasks 
(1 and 3), replenishment period Ts = 4 and capacity Cs = 1 
time units. When there are outstanding aperiodic requests, 
the next server instance executes as if it was another peri­
odic task. 
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Figure 1. Example of Polling Server 

For the case of dynamic priority systems there are 
adapted versions of the servers referred above but also 
specific ones, such as the Constant Bandwidth Server 
(CBS) [20] and the Total Bandwidth Server (TBS) [21]. 
This case is, however, out of the scope of this paper and 
will not be detailed here (see [22] for further infonnation). 



Finally, another kind of typical server is the Background 
Server (BS) that becomes active for execution whenever 
there is nothing else to be executed in the system, thus cor­
responding to the lowest priority level. 

The work reported in this paper uses Sporadic Servers. 
These can execute at any time, if capacity is available, 
while enforcing the bandwidth corresponding to the (CS1 Ts) 
pair. This requires a specific budget replenishment rule that 
is no longer strictly periodic, as for the PS and the OS, be­
ing instead scheduled whenever the capacity is consumed: 

• Being RT the replenishment time and Ts the server pe­
riod, if the server becomes active at tA and remaining 
capacity> 0 then RT = tA + Ts. 

• The replenishment capacity RA to be done at time RT 
is computed when the sporadic server becomes idle or 
Cs has been exhausted. Let tI be such a time. The 
value RA is set equal to the capacity consumed within 
the interval [tA,tIl. 

In the worst-case, when there are always outstanding 
aperiodic requests, the SS exhibits a periodic behavior for 
all purposes equivalent to that of a periodic task with the 
same period and execution time equivalent to the server 
budget, which is particularly useful for schedulability anal­
ysis. 

2.2. Servers in the Ethernet network domain 

The terminology associated to servers in the network­
ing domain is frequently different from that used in CPU 
scheduling. For example, a common server used in net­
working is the leaky bucket. This is a specific kind of a 
server category called traffic shapers [23], which purpose 
is to limit the amount of traffic that a node can submit to the 
network within a given time window, bounding the node 
burstiness. These servers use techniques similar to those of 
CPU servers, based on capacity that is eventually replen­
ished. Many different replenishment policies are also pos­
sible, being the periodic replenishment as with the Polling 
Server (PS) or the Deferrable Server (OS), the most com­
mon ones. However, it is hard to categorize these network 
servers similarly to the CPU servers because networks sel­
dom use clear fixed or dynamic priority traffic management 
schemes. In fact, there is a large variability of Medium Ac­
cess Control (MAC) protocols, some of them mixing dif­
ferent schemes such as round-robin scheduling, first-come­
first-served, multiple priority queues, etc. 

Focusing now on RTE protocols, some limited forms of 
server-based traffic handling can be found. PROFINET RT 
and IRT [6] present bi-phase periodic communication cy­
cles, comprising a mandatory Real-Time (RT) phase op­
tionally followed by a non-RT (NRT) phase. The RT sched­
ule is built off-line and downloaded to the switch at config­
uration time. The protocol depends on a custom switch to 
enforce the cyclic structure and traffic confinement. The 
protocol operation can be regarded as a polling server, de­
voted to the periodic traffic, composed with a background 
server, dedicated to the NRT traffic. 

TTEthernet [24] is also based on a customized switch 
that enforces a TDMA framework. When there is no RT 
traffic, nodes can transmit arbitrary NRT data. Whenever a 
TDMA slot is scheduled, the switch aborts current ongoing 
NRT transmissions, if any, making sure that the communi­
cation medium is free for the RT transfer. The underlying 
TDMA framework allows the existence of event slots thus, 
globally, the operation of this protocol can be regarded as a 
set of polling servers (off-line scheduled event slots) com­
bined with a background server that handles the NRT traf­
fic. 

Ethernet Powerlink [25] implements a cyclic dual-phase 
communication structure, with one phase devoted to the 
isochronous traffic and the other to aperiodic traffic. The 
protocol operation can be regarded as the composition of 
two polling servers, one devoted to the isochronous traf­
fic and the other to the asynchronous traffic. Within the 
isochronous window the messages are served cyclically, 
thus the protocol behaves as a polling server. The ac­
cess control is carried out via a Master-Slave scheme. The 
periodic real-time traffic requirements are supposed to be 
known at system design time and the corresponding sched­
ule is built offline and downloaded to the network master 
node. Aperiodic traffic is served on demand, and messages 
are sorted according to a fixed priority scheme. 

The switch architecture proposed by Wang et al [26] is 
based on a clock-driven scheduler that serves each input 
queue in a cyclic manner, approaching a polling server. The 
traffic is supposed to be static and known during the sys­
tem design. The port scheduling matrix is then computed 
offline and downloaded to the switch, at pre-runtime. 

Finally, other protocols, such as [23], implement traf­
fic shapers in the end nodes, managed by suitable software 
modules, which behave similarly to a OS. 

Due to infrastructural limitations, none of these proto­
cols supports arbitrary server policies nor their hierarchical 
composition and dynamic adaptation or creation/removal, 
features that are provided by the FTT-enabled Ethernet 
switch described in this work. 

3. FTT-enabled Ethernet Switch 

The FTT-enabled Ethernet Switch is a modified Eth­
ernet switch based on the Flexible Time-Triggered (FTT) 
paradigm and arouse from the work carried out in the scope 
of the FTT-SE protocol. 

3.1. FTT-SE and Server-SE 

FTT-SE [16] is a real-time Ethernet protocol for 
micro-segmented switched Ethernet networks with COTS 
switches that follows the Flexible Time-Triggered (FTT) 
paradigm. It uses a master/multi-slave transmission con­
trol technique in which a master addresses several slaves 
with a single poll that is broadcast once every so-called Ele­
mentary Cycle (EC) of fixed duration using a specific mes­
sage called Trigger Message (TM). This system supports 
synchronous (periodic) traffic, with periods that are inte­
ger multiples of the EC, asynchronous (aperiodic) traffic, 
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Figure 2. Traffic scheduling in FTT-SE. 

which is handled with lower priority than the synchronous 
one, and non-real-time (NRT) traffic that is handled in the 
background, using the time left in each EC, after the syn­
chronous and asynchronous traffic (Figure 2). 

The synchronous traffic is scheduled on-line by the mas­
ter and the respective schedules per EC are disseminated 
with the TM (Figure 2). Nodes decode the TM and trans­
mit immediately the scheduled messages with the switch 
taking care of their serialization. The scheduling is done so 
that all messages referred in a TM fit in the respective Ee. 
Thus, message queuing in the switch is strongly bounded 
and queues are always flushed by the end of each EC. The 
FTT master holds information about the nature of the data 
exchanges regarding the type of addressing (unicast, mul­
ticast and broadcast) and which end nodes are involved. 
With this information the master computes which messages 
follow disjoint paths (i.e., non overlapping source and des­
tination nodes) and thus build schedules that exploit this 
parallelism, increasing the aggregated throughput. 

The strict confinement of the asynchronous traffic, re­
quired for real-time operation, is achieved in FTT-SE by 
extending the transmission control role of the master node 
also to this traffic class. The slave nodes report, at the be­
ginning of each EC, the status of their asynchronous queues 
to the master, which then schedules the asynchronous trans­
mission requests, via the TM, at the appropriate instants 
and in strict observation of the EC duration and structure. 
This mechanism resembles the approach used in other real­
time protocols, e.g. Ethernet PowerLink and WorldFIP. It 
is, however, substantially more bandwidth efficient since 
there is no need for the master to periodically poll the 
slaves. FTT-SE takes advantage of the full-duplex links so 
that slaves report the status of their aperiodic traffic queues 
to the master approximately at the same time that the mas­
ter is sending the TM. The asynchronous signaling mecha­
nism in presented in detail in [27]. 

Server-SE [15] is a specialization of the FTT-SE proto­
col configured for asynchronous traffic, only, and in which 
all the traffic is handled by servers. These can handle a sin­
gle stream each or a set of messages related to one applica­
tion or node and can be composed hierarchically. Server­
SE is thus an important piece in supporting composability 

in the time domain in a distributed system being capable of 
handling arbitrary arrival patterns while maintaining time­
liness guarantees . 

3.2. FTT-Enabled Ethernet Switch 

However, FTT-SE, and consequently Server-SE, present 
some structural limitations that cannot be solved with stan­
dard Ethernet switches. These arise from the fact that the 
protocol assumes all nodes to be FTT-compliant, i.e., re­
specting the EC schedules transmitted in the TM and the 
respective timings. Therefore, a specific network device 
driver is needed, which might not be available in several 
operating systems, and misbehaving nodes not respecting 
the protocol timings will jeopardize all timing guarantees. 
The solution to overcome these problems is to add traffic 
confinement capabilities, particularly temporal control, to 
the switch. This was achieved inserting the FTT master in­
side the switch. The switch generates the TM in each EC, 
thus polling the synchronous traffic directly. Conversely, 
the asynchronous traffic need not be polled, being queued 
inside the switch in dedicated memory pools, and trans­
mitted when appropriate, e.g., within servers, or simply 
enforcing a minimum inter-transmission time. Thus, the 
switch basically shapes the traffic in the outgoing links so 
that it conforms to desired (negotiated) timing patterns. 

Summarizing, the FTT-enabled Ethernet Switch was de­
signed to provide the following features, some of which are 
simply inherited from FTT-SE: 

1. online admission control, dynamic QoS management 
and arbitrary traffic scheduling policies; 

2. high system integrity with unauthorized real-time 
messages being eliminated at the switch input ports; 

3. asynchronous traffic autonomously triggered by the 
nodes, with arbitrary arrival patterns; 

4. high configurability: fully synchronous mode, ad­
justable mixed synchronous/asynchronous mode and 
fully asynchronous mode; 

5. a standard node can take advantage of the real-time 
services simply negotiating with the switch the cre­
ation of a server, i.e., a virtual channel (the negotiation 
can even be done by a third party node); 

6. a standard node can readily transmit non-real-time 
traffic using a background server thus not interfering 
with the real-time traffic. 

4. Server scheduling integration architectures 

The integration of server-based traffic scheduling in the 
FTT-enabled Ethernet Switch can be carried either in soft­
ware, within the Master Module, or in hardware, inside the 
Switching Module (Figure 3). This design option results in 
differentiated behaviors in terms of responsiveness, flexi­
bility, hardware complexity and global system schedulabil­
ity. 
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This section explores these two architectural design op­
tions, showing their operation principles and presenting a 
qualitative comparison among them. 

4.1. Server-based traffic scheduling implemented 
in software 

In the software implementation the servers are managed 
by the Master Module. From the logical operation point of 
view, this approach is essentially equivalent to the Server­
SE protocol [15]. The servers are, in this case, software 
entities that are accepted, created, modified, deleted and 
scheduled in the Master Module. 
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Figure 4. Software implementation event sequence 

The management of the servers is carried out upon ap­
plication request via standard FTT configuration messages 
(FIT Requests) that are passed on to the Master Module. 
Similarly to FTT-SE, the result of the negotiation procedure 
is reported back to the requester entity. However, in this 
case, it is also intercepted by the Switching Module logic, 
which uses the report result to self-configure the necessary 

resources, namely memory blocks and the table with the 
streams allowed for each server. The memory blocks are 
specifically tailored for each server, guaranteeing the ab­
sence of memory conflicts among different servers. 

After this initial set-up phase the servers become fully 
functional and enter in normal operation mode (Figure 4). 
The nodes may then issue messages at any instant, which 
are intercepted and stored by the Switching Module logic 
(step SI). At the end of every EC the Switching Module 
reports the queues status to the Master Module (step S2). 
Then, the Master builds the schedule for the following EC, 
which takes into account all the pending requests (step S3). 
The EC schedule is then communicated to the Switching 
Module, via the TM, at the beginning of the following EC 
(step S4). The Switching Module intercepts the TM and, fi­
nally, forwards the previously queued messages to the des­
tination nodes when the asynchronous window comes (step 
S5). 

Figure 4 shows that the minimum delay a message may 
experience happens when it arrives at the switch at the end 
of the EC, just before the instant in which the Switching 
Module reports the queues status to the Master Module. In 
this scenario the server is scheduled with a delay of one 
EC (LEC) (recall that the Master Module always sched­
ules the traffic one EC in advance). Then, the message has 
to wait for the Trigger Message (LT M) and the EC Syn­
chronous Window (LSW) duration before being transmit­
ted. Also note that in store-and-forward mode, as in the cur­
rent prototype, the transmission time q must be accounted 
for twice. Finally, the switching logic also imposes a small 
delay, represented by SD. Therefore, the minimum latency 
that an asynchronous message i, with transmission time q, 
may experience (L:::!n) is given by Equation 1. 

L:::!ni =LEC+LTM +LSW +2*Ci+SD (1) 

In the absence of contention with other asynchronous 
messages, one asynchronous message experiences a worst­
case latency (Ls,;'ax) when it arrives at the switch in the in­
stant immediately after the Switching Module reporting its 
queues status to the Master Module. Since the report only 
occurs once in each EC, an additional delay of one LEC is 
added. Thus, the value of Ls,;'axi is given by Equation 2. 

Ls:axi =2*LEC +LTM +LSW+2*Ci+SD (2) 

This simple analysis highlights the impact of the explicit 
signalling mechanism with a period of one EC to post the 
scheduler about the current server requests. The relatively 
and potentially large duration of the EC leads, thus, to a 
loss of reactivity. 

From a logical point of view this scheme exhibits es­
sentially the same properties as the Server-SE protocol, 
supporting arbitrary server scheduling policies as well as 
their composition, combined with a tight integration with 
the flexible Master Module scheduling, admission control 
and QoS management. However, contrarily to Server-SE, 
non-compliant or misbehaving nodes no longer can jeop­
ardize the system timeliness because all the incoming traf­
fic is screened, subject to sanity checks and, if necessary, 



trashed. Additionally, the access to the servers is transpar­
ent to the end nodes, allowing the connection of nodes that 
do not implement the FTT-SE protocol while, at the same 
time, providing them with guaranteed QoS levels. This fea­
ture is particularly valuable to incorporate legacy nodes or 
to manage the system complexity, by providing transparent 
network partitions that are managed completely within the 
network. 

4.2. Server-based traffic scheduling implemented 
in hardware 

The low reactivity of the software-based architecture 
can be improved partitioning the servers between software 
and hardware. The configuration tasks, related mainly with 
admission control, schedulability analysis and QoS nego­
tiation, are complex, hard to implement in hardware and 
relatively tolerant to delays, thus they are left in software, 
within the Master Module. On the other hand, the tasks re­
lated with the online server management and message for­
warding are supported in hardware, guaranteeing low la­
tency and high predictability. In this approach the servers 
are created at synthesis time and consequently their type 
and number are not changeable dynamically. Every time a 
new server is added, removed or its parameters modified, 
the negotiation results are sent to the Switching Module, 
which reconfigures the servers operational parameters ac­
cordingly. A more dynamic architecture, permitting the 
dynamic creation and removal of servers, would require on­
line FPGA reconfiguration and is beyond the scope of this 
paper. 

In this approach the server scheduling is carried out au­
tonomously by the Switching Module, independently of 
the scheduler in the Master Module. Thus, two schedulers 
co-exist, the Master Module scheduler handling the syn­
chronous traffic in the synchronous window and the servers 
scheduler handling the asynchronous and non-real-time 
traffic in the asynchronous window. Specifically, during the 
asynchronous window the hardware scheduler/dispatcher 
unit verifies continuously the status of each server FIFO 
queue and, following the scheduler rules, forwards imme­
diately all messages that fit in that window. Reactivity is 
thus improved with respect to the software-based architec­
ture. 
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Figure 5. Hardware implementation event sequence 

Figure 5 shows that in the best case scenario the la­
tency is essentially the message transmission time plus 
the switching latency, a situation that happens whenever 
a transmission fits within the current asynchronous win­
dow (scenario S 1). In the absence of contention from other 
asynchronous messages, the worst-case latency happens 
when the message is sent to the switch near the end of 
the asynchronous window and does not fit in for a small 
amount. In that case, to prevent window overruns the 
switch will not forward any message that arrives within a 
configurable guarding window (equivalent to the transmis­
sion time of the longest possible asynchronous message). 
Thus, the value of L��; is given by Equation 3, where LGW 
represents the guarding window duration. 

L':::u; =LGW +LTM +LSW +2*Ci +SD (3) 

Therefore, the hardware-based implementation presents 
higher reactivity that is independent of the EC duration. 
Additionally, for simple scheduling algorithms such as 
Rate Monotonic or Round-Robin, the implementation is 
resource-efficient and fairly simple, requiring basically one 
counter, one timer and some logic per server. 

However, the hardware-based architecture compares 
negatively with the software one in terms of flexibility. The 
maximum number and type of servers has to be defined at 
pre-runtime, despite their allocation, deallocation and re­
configuration being done at runtime. On the other hand, 
complex server scheduling methods can require a signifi­
cant amount of hardware resources. Furthermore, from the 
average bandwidth efficiency point of view, the software 
architecture can also outperform the hardware one since, 
at scheduling time, the size of the messages waiting in the 
switch queues are known, which allows optimizing the use 
of the asynchronous window. 

5. Experimental results 

This section presents experimental results extracted 
from two prototype implementations, one of each architec­
ture, which allow assessing the correctness of the servers 
operation in terms of bandwidth guarantees, traffic isola­
tion and latency bounds. 

Both implementations are based on a 4 port FTT­
enabled Ethernet Switch architecture, following a similar 
Hw/Sw co-design approach as proposed in [28]. The pro­
totype switch implements the Switching Module in hard­
ware using a NetFPGA board [29], integrating a Virtex-II 
Pro XC2VP50 FPGA. The Master Module is implemented 
in software, running in an independent CPU, connected to 
the FPGA via a dedicated Ethernet link on Port 4. 

A common scenario is used to allow comparisons, con­
sisting of an EC with a duration of lms with the asyn­
chronous window using 42% of the EC. There are two spo­
radic servers, SSI and SS2, with a budget of 3200B(Bytes) 
and period lms each, plus a background server BS that re­
claims the bandwidth left free by the sporadic servers. 

Figure 6 describes the setup used in the experiments. 
A video stream is simultaneously fed through servers SS 1 



and BS, while a time-bounded constant load, simulating an 
UDP transaction, is fed to SS2. The video stream was an­
alyzed offline, offering an average load of around 10Mbps, 
with peaks that reach 21.9Mbps. Additionally, when the 
video application is launched it sends a burst of messages 
that lasts for 77ms and offers an average load of 87.4Mbps. 
For the sake of efficiency of the channel bandwidth uti­
lization, this period is considered as an initialization phase, 
during which no real-time guarantees are given. Note that 
this burst is completely dependent on the specific streaming 
application. For applications requiring shorter initialization 
phases it would be possible to tune the streaming software 
to use a lower amount of buffers, thus reducing the initial 
burst length. The load fed through SS2 is active from the 
instant t = 23s to 61s and, when active, generates a constant 
load of 58.6Mbps. A simple assessment of the load band­
width submitted to the servers allows concluding that when 
the video streams experience peak activity the bandwidth is 
insufficient, leading to overloads. SS 1 has the highest pri­
ority and thus the video stream served by it should not be 
degraded during overloads. The simulated UDP traffic is 
served by the lower priority SS2. Since the bandwidth al­
located to SS 1 and SS2 exceeds the asynchronous window 
capacity, during peak activity on SS 1, SS2 may also not be 
able to receive the full bandwidth. Finally, the video stream 
fed through the BS is expected to experience a severe qual­
ity degradation when SS2 is active, since the BS has no 
guaranteed bandwidth. 

FTT·Enabled Switch 
with Server�based Traffic Scheduling 

Master Module 
Slave 2 Slave 3 

Figure 6. Setup 

5.1. Software implementation 

The implementation of the servers in software, inside 
the Master Module, requires for the hardware components 
of the switch 49% of the board FPGA total slices, allowing 
a maximum operation frequency of 127. 13MHz. 

Figure 7 shows, for each server, the difference between 
the submitted traffic at the input ports of the FTT-enabled 
Ethernet Switch and the allowed traffic at output ports. 
The first graph shows the submitted traffic (video stream) 
to server SS 1 and the corresponding allowed traffic. The 
two curves overlap, meaning that the traffic managed by 
this highest priority server is forwarded without significant 
losses and without a noticeable delay. The second graph 
represents their difference which, as expected, is essentially 

null. The third graph shows the submitted and allowed traf­
fic (video stream) managed by BS. Between the instants 
t = 23s to 61s, i.e., when the traffic submitted to SS2 is ac­
tive, there is a significant deviation between the submitted 
traffic and the allowed traffic. This means that the band­
width left free by servers SS 1 and SS2 is not enough for 
transmitting all the traffic submitted to the BS, eventually 
leading to packet losses. On the other hand, there are cases 
in which the submitted traffic is below the allowed (out­
going) traffic, a situation that occurs due to buffering in 
the switch when the bandwidth allocated to the server is 
enough to flush the buffered messages. The fourth graph 
shows the difference between the submitted and allowed 
traffic for the BS. A significant amount of dropped packets 
occurs while SS2 is active. Finally, the last graph shows the 
UDP simulated load submitted to SS2. This graphs shows 
the traffic isolation provided by the servers. SS2 confines 
its output traffic to the allocated capacity, trashing the in­
coming packets in excess of its buffering capacity. There 
are also fluctuations in the allowed traffic of SS2 caused by 
peaks of bandwidth use by SS 1 that has more priority. 

Table 1 shows the total number of packets transmitted 
and effectively forwarded by the switch during the experi­
ment, for each server. The numeric results confirm the ob­
servations from Figure 7. The highest priority server SS 1 
experiences a marginal packet loss while servers SS2 and 
BS experience higher packet losses, particularly BS due to 
its lowest priority. Note that SS1 only loses packets during 
the initialization phase, when the average submitted load 
largely exceeds its allocated bandwidth, as mentioned be­
fore. After t = 77ms no further packet losses occur. This 
phenomenon can be observed in the second graph of Fig­
ure 7, where it is visible that packets are dropped only at 
the beginning of the experiment. 

SSt SS2 BS 
Submitted Packets 57854 183778 57328 

Forwarded Packets 57398 72529 33877 

Table 1. Number of packets submitted and allowed 
(software implementation). 

To assess the reactivity of the software-based architec­
ture we used the configuration described previously, with 
a packet generator, served by the SS 1, sending periodically 
1500B packets (Ci = 122.us) to the switch, with equal MAC 
destination and source addresses, causing the switch to re­
turn the packet to the sender. The packets are generated 
with a period equal to one EC plus a small offset, 16ns, to 
cause packet arrivals at the switch in every different rela­
tive phase of the EC structure. The round-trip delay was 
measured at the generator node, computing the time dif­
ference between the instant in which each packet starts to 
be transmitted by the node and the corresponding instant 
in which the same packet starts to be received back in the 
sender node. For consistency, this requires subtracting Ci 
to the latency equations in Section 4. 

Moreover, the value of SD was experimentally deter­
mined to be 2.8.us. The other relevant timing parameters 
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Figure 7. Submitted and allowed load difference in software implementation. 

associated with the EC configuration are shown in Figure 9. 
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Figure 8. Histogram of the minimum server latency 
distribution of both architectures. 

Figure 8 presents the histogram of the results which ex­
hibit a strong match with the expected ones. The estimated 
best and worst-case round-trip delays obtained from Equa­
tions 1 and 2 areL:ni = 1684.78}1s andL::'a.xi = 2684.78}1s 
while the actual measured round-trip delays were com­
prised between 1684, 8}1s and 2684.8}1s. 

5.2. Hardware implementation 

As opposed to the software implementation, the hard­
ware implementation requires an amount of FPGA re­
sources that depends on the maximum number of servers. 
To characterize this dependency we instantiated a growing 
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Figure 9. EC implementation. 

number of servers until reaching the full FPGA utilization. 
The results are show in Figure 10, with a linear depen­
dency between the number of servers and the amount of 
resources required. The maximum operating frequencies 
are also presented. We consider that frequencies remain 
constant, however, the small registered variations are due 
to the optimization algorithm in the synthesize application. 

A set of tests regarding the servers bandwidth utiliza­
tion, similar to the one carried out for the software imple­
mentation was also carried out. As expected, the graphs 
obtained for the diverse servers are essentially equal to the 
ones presented in Figure 7, since a similar configuration 
was used, and thus are not repeated. 

The total number of packets transmitted and effectively 
forwarded by the switch in this case are reported in Table 2. 
As the configuration was similar for both implementations, 
these results are essentially similar to those reported in Ta­
ble 1, as expected. 

Concerning the reactivity of the hardware implemented 
servers we measured the round-trip delay similarly to the 
software case and as referred in Section 4.2. This delay is 
expected to be comprised between 125.8}1s, case in which 
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the message forwarding fits within the asynchronous win­
dow, and L��i = 825.8,us as given by Equation 3, other­
wise. The measured delay varied between 125.8,us and 
826,us again showing a strong consistency with the respec­
tive estimates (Figure 8). Moreover, there is also a high 
number of occurrences of the lower bound delay (l25.8,us), 
corresponding to the situation in which the packets are re­
ceived by the switch and can be forwarded during the asyn­
chronous window. 

6. Conclusions 

Served-based traffic scheduling is an efficient way of 
supporting resource partitioning which is considered an 
important building block to provide composability and al­
low tackling the growing complexity and heterogeneity of 
current Networked Embedded Systems. One fundamen­
tal resource in such systems is the network and enforc­
ing network partitions that provide temporal isolation with 
timeliness guarantees and arbitrary arrival patterns is a de­
sired objective. To reach this objective the authors recently 
proposed the Server-SE protocol that applies server-based 
traffic scheduling over COTS Ethernet switches. This 
approach, however, suffers from the limitations of such 
switches and, thus, the authors also proposed a new switch, 
the FTT-enabled switch. 

In this paper, the authors proposed integrating the 
servers inside the new switch, enhancing the flexibility and 
robustness of the Server-SE solution, without jeopardizing 
the timeliness guarantees. Particularly, the paper explores 
two options for such integration, with the servers imple­
mented in software or hardware, and compares them in 
terms of server responsiveness, flexibility, hardware com­
plexity and global system schedulability. In global terms, 
the software implementation, using the Master Module, 

SSt SS2 BS 
Submitted packets 58473 181337 57447 

Forwarded packets 58014 73498 23980 

Table 2. Number of packets submitted and allowed 
(hardware implementation). 

provides greater flexibility in creating, managing and delet­
ing servers. Moreover, it allows elaborated global schedul­
ing, managing different kinds of traffic in an integrated way 
and is more scalable. On the other hand, the hardware im­
plementation, using the Switching Module, offers greater 
reactivity, an important aspect in order to maintain the ad­
vantages of some servers. On the other hand, it allows a 
limited number of servers, only, and simple scheduling al­
gorithms. 

The paper presented a prototype implementation of both 
architectures and their experimental assessment. The re­
sults show the feasibility and correctness of the approaches 
that were considered. We believe that the FTT-enabled 
switch enhanced with server-based scheduling presented in 
this paper offers an effective and efficient support to net­
work partitions, boosting the applicability of switched Eth­
ernet in complex NES, as required by mainstream frame­
works such as AUTOSAR, IMA or IEC61499. 
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