
Multi-level Hierarchical Scheduling in Ethernet Switches

Rui Santos
IEETA / University of Aveiro

Aveiro, Portugal
rsantos@ua.pt

Moris Behnam
MRTC / Mälardalen University

Västerås, Sweden
moris.behnam@mdh.se

Thomas Nolte
MRTC / Mälardalen University

Västerås, Sweden
thomas.nolte@mdh.se

Paulo Pedreiras
IEETA / University of Aveiro

Aveiro, Portugal
pbrp@ua.pt

Luís Almeida
University of Porto

Porto, Portugal
lda@fe.up.pt

ABSTRACT
The complexity of Networked Embedded Systems (NES) has
been growing steeply, due to increases both in size and func-
tionality, and is becoming a major development concern.
This situation is pushing for paradigm changes in NES de-
sign methodologies towards higher composability and flexi-
bility. Component-oriented design technologies, in particu-
lar supported by server-based scheduling, seem to be good
candidates to provide the needed properties.

As a response we developed a multi-level hierarchical server-
based architecture for Ethernet switches that provides com-
posability and supports online adaptation and reconfigura-
tion. This paper extends our work, presenting the associ-
ated response-time based schedulability analysis, necessary
for the admission control procedure. Additionally, we have
derived the temporal complexity of the analysis, which is
shown to be O(n2), where n is the number of higher pri-
ority components associated with a given server. Finally,
we present a proof-of-concept implementation and a set of
experimental results that validates the analysis.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications, Distri-
buted networks

General Terms
Algorithms, Design, Performance

Keywords
Hierarchical Scheduling, Real-Time Systems, Real-Time Eth-
ernet, Real-Time Communications, Response-Time Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

1. INTRODUCTION
Networked Embedded Systems (NES) are becoming large

scale distributed systems composed of networked nodes that
increasingly embed more functionality and exchange higher
amounts of and more heterogeneous data. This scenario is
still aggravated by the growing difficulty in fully configuring
the system at design time and the consequent need for run-
time adaptation. Such adaptation is necessary to make bet-
ter use of the computational and communications resources,
taking actual operational environment and state of systems
components into consideration.

One suitable methodology to tackle such increasing com-
plexity is component-oriented design. It enables compos-
ability and can be effectively deployed using server-based
architectures that are an effective means to enable controlled
resource sharing. In particular, these techniques allow trans-
parently providing the applications with virtual resources
that are a fraction of the capacity of the corresponding hard-
ware resources, while offering mutual temporal isolation.
Thus, servers can provide composability among different ap-
plications and, when organized hierarchically, they can also
provide composability among different applications compo-
nents. In this paper we use hierarchical server scheduling
to enable composability among streams of messages in NES.
Enabling such composability allows us to deal with complex
systems in a flexible manner.

Frequently NES are used in application domains that have
intrinsic real-time requirements, e.g., in distributed real-
time control systems that closely interact with the phys-
ical environment. In such cases special-purpose real-time
communication networks are used to achieve the required
timeliness properties. Real-Time Ethernet-based protocols
(RTE), such as PROFINET, EtherCAT, Ethernet POW-
ERLINK and TTEthernet, are emerging as the de facto
communication technologies for NES, taking advantage of
the appealing attributes of the underlying Ethernet technol-
ogy. However, currently available RTE protocols do not em-
ploy efficient server-based scheduling policies, e.g., policies
as those developed for CPU scheduling. Even when avail-
able, network partitions are typically static, as in TDMA-
based approaches, and do not adapt to variations in number
of active components in the system or in their requirements.
Moreover, the respect for network partitions is frequently
delegated to the end nodes that must execute a specific
layer on top of the general network interface, typically a
traffic shaper, which is a limitation for the integration of

185

legacy systems and other general purpose systems that do
not originally include such layer. Finally, even in the cases
in which such layer can be effectively deployed, the proper
operation of the system requires the compliance of all system
components to a achieve a correct temporal behavior.

These observations motivate the development of a novel
multi-level hierarchical server-based architecture for Ether-
net switches. This architecture allows for a hierarchical com-
position of servers that enable division of the network band-
width in a hierarchical way, creating virtual channels with
temporal isolation among them, thus supporting compos-
ability in the time domain. Due to the multi-level hierar-
chy, this composability applies not only to different applica-
tions that might coexist in the same node but also to differ-
ent streams of the same applications, e.g., data and control
streams in multimedia streaming.

Moreover, to efficiently cope with applications that ex-
hibit evolving requirements, the hierarchical server frame-
work supports both dynamic server adaptation, i.e., the
server attributes such as capacity and period may be adapted
online, and hierarchy reconfiguration, i.e., servers may be
added, moved to different branches or even removed. The
adaptation and reconfiguration services are accessed via re-
configuration request messages issued by the nodes to the
switch.

NES are often used in critical applications, and thus tem-
poral requirements behavior must be guaranteed by design.
To achieve such level of guarantees, we force all change re-
quests through an admission control procedure that per-
forms a schedulability analysis test and verifies if the Ether-
net switch has enough resources to accommodate the result-
ing configuration (e.g. memory, server structures). The au-
tomotive domain is an example where the flexibility (adap-
tation and reconfiguration) is important to integrate compo-
nents progressively without needing to reanalyze the whole
system, but just with incremental analysis.

This paper presents the following contributions:

• a new architecture for Ethernet switches that provides
a dynamically reconfigurable and adaptable multi-level
hierarchy of temporally isolated virtual channels;

• a new response-time based schedulability analysis for
multi-level hierarchical scheduling on switched Ether-
net networks, suitable to the proposed architecture;

• the analysis of the respective temporal complexity,
which is shown to be O(n2), where n is the number
of higher priority components associated with a given
server;

• and a proof-of-concept implementation that validates
the proposed architecture and the analysis with exper-
imental data.

The remainder of the paper is organized as follows. Sec-
tion 2 presents an overview of related work, and Section 3
outlines the system model. Section 4 presents the response
time schedulability analysis while Section 5 presents the al-
gorithm for computing the exact response time. Section 6
presents a prototype implementation of the framework and
Section 7 presents experimental results that validate the
analysis and respective implementation. Finally, Section 8
concludes the paper.

2. RELATED WORK
The use of servers in networking is common, being the

leaky bucket the most well-known. The leaky-bucket is, in
fact, part of a general server category called traffic shapers [9],
which purpose is to limit the amount of traffic that a node
can submit to the network within a given time window,
bounding the node burstiness. These servers use techniques
similar to those used by CPU servers, based on capacity that
is eventually replenished. Many different replenishment poli-
cies are also possible, being the periodic replenishment as
with the Polling Server (PS) or the Deferrable Server (DS),
the most common ones.

Particularly regarding Real-Time Ethernet (RTE) proto-
cols, some very limited forms of server-based traffic handling
can also be found. Some protocols enforce periodic commu-
nication cycles with reserved windows for different traffic
classes (e.g., PROFINET-IRT [11] and Ethernet POWER-
LINK [1]). This is a trivial composition of several PS that
results in an inefficient use of the network bandwidth. Other
protocols, such as [9], implement traffic shapers in the end
nodes that behave similarly to a DS. However, infrastruc-
tural limitations, which can be solved by the framework
presented in this paper, prevent these protocols from sup-
porting arbitrary server policies or hierarchical composition
and dynamic reconfiguration.

Recent QoS-enabled Ethernet switches, e.g., Cisco Cat-
alyst WS-C3560-8PC-S, already include enhanced features
such as advanced QoS control and rate limitation. The lat-
ter operates like a server, allowing to control the maximum
bandwidth allocated to a user entity but fine control over the
server temporal parameters, support for composition and
admission control are still lacking. Enhanced architectures
such as that proposed in [16] rely on clock-driven scheduling
which approximates a PS and use static traffic definition to
optimize the scheduling.

Another related area, despite typically considering pre-
emptive task scheduling, is that of general hierarchical sche-
duling frameworks (HSF). Deng and Liu [6] began propos-
ing two-level HSF for open systems, where subsystems may
be developed and validated independently. Kuo and Li [8]
introduce for such two-level HSF a schedulability analysis
based on FPS with a global scheduler. Shin and Lee [15]
present a generic scheduling interface model in order to con-
struct hierarchical scheduling frameworks. Almeida and Pe-
dreiras [2] present a response time analysis for the periodic
server model and address the problem of designing a server
to fulfill the application constraints. Arvind et al. [7] gener-
alize the periodic resource model for compositional analysis
of hierarchical scheduling frameworks. Finally, another re-
lated area is that of synchronization protocols in HSF. For
example, SIRAP [3] addresses CPU resource sharing among
several subsystems that execute within servers and it pro-
poses inserting idle-time whenever the remaining capacity is
not enough to execute an access to a shared resource. In the
specific case of non-preemptive scheduling, which implies an
exclusive access to a shared resource, SIRAP becomes simi-
lar to the techniques presented in [10] for the scheduling of
the asynchronous traffic in FTT-CAN. Nevertheless, both
cases address two-levels HSFs, only, while in this paper we
seek explicitly the support to multi-level HSF.

Finally, another analytical techniques using the Network
Calculus can also be considered, however they use a analysis
model based on the burstiness and long-term rate, which is

186

different from the analysis proposed in this paper, base on
the periodic model.

3. MODEL DEFINITION
This paper defines and formalizes a general multi-level hi-

erarchical server-based scheduling framework that efficiently
handles the distribution of shared resources. While the fo-
cus is on the distribution of bandwidth in switched Ethernet
networks, the concept can be generalized and reused in other
network technologies or even on other fields with similar re-
quirements and constraints. The proposed framework allows
dividing and subdividing the network bandwidth (resource)
among different streams, in a hierarchical way, mirroring the
composition of the systems, while providing real-time guar-
antees (bandwidth and response time) and temporal isola-
tion.

This hierarchical structure can be represented as a tree
(Figure 1). Each node of the hierarchy represents a server
that handles a portion of bandwidth and, associated to this
server (parent), several servers (children) can be connected
that share the parent bandwidth. This procedure can be it-
erated as many times as required, resulting in a multi-level
server hierarchy. A scheduler attached to each parent server
regulates the access of the children servers to the bandwidth
it provides. The streams, which are the entities that actu-
ally consume the bandwidth, are placed at the end of the
branches, i.e., the leaves.

scheduler

schedulerscheduler

scheduler

Γ11
server

Γ22
server

Γ31
server

Γ21
server

Γ41
stream

Γ42
stream

Γ33
stream

Level 1

Level 2

Level 3

Level 4

y

x

scheduler

Γ32
server

Figure 1: Server Hierarchy.

As mentioned in Section 1, the hierarchical server frame-
work herein presented features dynamic adaptability and re-
configurability, i.e., it allows adding and removing servers
and streams, as well as updating attributes at runtime with-
out disrupting the switch operation. To this end, a manage-
ment interface allows the nodes to communicate hierarchy
update requests to the switch. To ensure a correct real-
time behavior, all such requests are subject to an admission
control based on the schedulability analysis algorithm pre-
sented in Section 5. This algorithm verifies if all server and
stream deadlines can be met and only in such case the server
hierarchy is updated.

The framework proposed in this paper presents some con-
straints that have relevant impact in the schedulability anal-
ysis. As usual in communication protocols, the preemption
of packets that are in transmission is not allowed. Moreover,
the server capacity is strictly enforced and thus overruns
cannot occur. Consequently, idle time may appear at the
end of each server instance whenever the capacity available
is not enough to transmit the next packet.

3.1 Servers and streams
In the scope of this paper a component Γyx is identified by

indexes y and x, where y identifies the level in the hierarchy
and x identifies the component inside that level (Figure 1).
This way, y = 1, .., NL and x = 1, .., NCy, where NL is the
maximum number of levels in the hierarchy and NCy is the
maximum number of components in the level y.

The asynchronous streams are at the end of the hierarchy
and they are characterized in (1) using the sporadic real-
time model, where Cyx is the message transmission time of
a stream instance, Tmityx represents the respective min-
imum interarrival time and Dyx the deadline. It is as-
sumed that a message stream instance may generate several
packets, which have a size comprised between Mminyx and
Mmaxyx . Pyx identifies the parent server, i.e, the server to
which the stream is connected to and RTyx is its computed
response time.

ASyx = (Cyx , Tmityx ,Mmaxyx ,Mminyx , Pyx , RTyx , Dyx) (1)

A server Srvyx is characterized in (2) by its capacity Cyx ,
replenishment period Tyx , deadline Dyx and a few data ex-
tracted from the set of children components, either servers or
streams, namely the maximum and minimum packet trans-
mission times (Mmaxyx and Mminyx , respectively). More-
over, the server Srvyx is associated with a parent server Pyx

and a corresponding computed upper bound response time
RTyx . Despite the similarity between the characterization of
servers and streams, there is a fundamental difference since
only streams imply actual transmission time that uses the
capacity of the respective servers. Servers merely character-
ize a reservation of the network resource.

Srvyx = (Cyx , Tyx ,Mmaxyx ,Mminyx , Pyx , RTyx , Dyx) (2)

In the remainder of the paper we will refer to both streams
and servers as components, in an integrated way.

4. SECHEDULABILITY ANALYSIS
The schedulability analysis is performed by the admission

controller to verify if eventual change requests to the server
hierarchy are feasible, i.e., it checks if the change results
in a configuration in which all the component deadlines are
met. This section introduces a response-time schedulability
analysis algorithm, based on deadline monotonic scheduling,
for a generic hierarchical structure of servers and streams
as presented above. However, it is equally applicable to
arbitrary fixed priorities in which case the models in (1) and
(2) must be extended with a priority.

With respect to previous related work of the authors [12]
and [3], the analysis in this paper accounts for inserted idle-
time in a different more efficient manner and considers the

187

preemption between packets, but not the preemptive trans-
mission of packets. Both innovations result in increased ac-
curacy as shown later on in the experiments.

4.1 Schedulability analysis algorithm
As referred before, server capacities are strictly enforced

and overruns, e.g., caused by a non-preemptive packet trans-
mission that extends beyond the exhaustion of the respec-
tive server capacity, are not allowed. This is avoided insert-
ing idle-time, called self-blocking in the scope of SIRAP [3],
whenever the remaining server capacity is not enough for the
transmission of a full packet. This way, the remaining ca-
pacity is wasted and the pending transmission is delayed for
successive server instances when enough capacity is available
(Figure 2). Therefore, the maximum inserted idle-time that
a server component Γyx can suffer is equal to the maximum
packet transmission time managed by this server (Mmaxyx).
This value also allows knowing which is the maximum block-
ing caused by the respective component Γyx to the higher
priority components in the same branch and in the same
level. On the other hand, Mminyx is used when considering
non-preemption in the computation of the higher priority in-
terference and to compute the maximum memory required
in each branch. This latter subject, however, is out of the
scope of this paper.

When a change in the hierarchical structure is requested,
for instance adding or removing a stream, it may have im-
pact in Mmax and Mmin along the hierarchy. Therefore,
the schedulability algorithm presented in this section is ex-
ecuted in two phases, as shown below.

Capacity
used

Capacity
available

xy
C

xy
T

Request

xy
T

xy
C

t

Figure 2: Inserting idle-time to enforce servers ca-
pacities.

4.1.1 Schedulability analysis algorithm - 1st phase
This phase evaluates, for each sever in the hierarchy path,

the impact in Mmax and Mmin of the change request. This
procedure is carried out from the bottom to the top, prop-
agating the maximum blocking time and memory require-
ments to the parent servers. At the end of this phase, the
top level component Γ11 will have the maximum (Mmax)
and minimum (Mmin) packet transmission times among all
the streams transmitted. Correspondingly, each server Γxy

will inherit Mmax and Mmin from all its children. An al-
ternative to this step would be to use the maximum packet
size allowed by the technology. However, despite the simpli-
fication, it would generate unnecessary pessimism.

Moreover, this phase also verifies the necessary condition
described in (3) to see if all servers have capacity at least as
large as the maximum packet they need to handle. If this
condition fails the analysis stops and the current configura-
tion remains unchanged.

∀Γyx,y=1..NL,x=1..NCy , Cyx ≥ Mmaxyx (3)

4.1.2 Schedulability analysis algorithm - 2nd phase
This phase consists in computing the components worst-

case response-times RTyx and comparing with the respective
deadlines to assess the schedulability of the hierarchy.

To compute the worst-case response times we use the typ-
ical technique in hierarchical scheduling based on a request
bound function rbf that models the load submitted to a
server and a supply bound function sbf that models the ca-
pacity (bandwidth) provided by a server.

In this case, we define rbfyx(t) as the request bound func-
tion of the server Γyx that quantifies the maximum load
submitted up to instant t to the parent component Pyx by
the component itself together with the interference of higher
priority components and the blocking of low priority com-
ponents. Then we define sbfPyx

(t) as the supply bound
function associated to the parent component of Γyx that
computes the minimum bandwidth supply provided to its
children at instant t.

As referred, one important aspect that we are consider-
ing in this analysis, that was not considered in [12], is that
preemption is allowed between packets, only, i.e., packets
transmission is non-preemptive. Particularly, any higher
priority components that become ready during the trans-
mission of the last packet (of a stream or server instance)
will not be able to preempt it and thus will not impact on
the component response time. If full preemption was con-
sidered, more interference could potentially be accounted for
and the worst-case response time estimate would yield more
pessimistic.

However, the model does not explicitly say which is the
length of the last packet (M last). Thus, the safe choice is to
set M last = Mmin which maximizes the interference that a
component can suffer.

The response time RTyx is then computed as in (4), where
wyx is the busy interval for the Γyx component. This interval
is the time lapse from when Γyx becomes ready until it starts
transmitting its last packet, considering all higher priority
load that becomes ready in the meanwhile.

RTyx = wyx +M last
yx , (4)

wyx = earliest t > 0 : rbfyx(t) = sbfPyx
(t)

where M last
yx = Mminyx .

The request bound function rbfyx(t) is now computed as
in (5) where IHyx(t) is the higher priority load generated up
to instant t and submitted to the same parent component
ΓPyx

as given by (6), and BLyx (7) is a blocking term as-
sociated to the non-preemptive nature of the packets trans-
mission and maximized by the largest Mmax among all lower
or equal priority components lpe(Γyx). Note that the M last

yx

(the length of the last packet) is removed from the request
bound function, since it was already considered in (4).

rbfyx(t) = IHyx(t) +BLyx + Cyx −M last
yx (5)

188

IHyx(t) =
∑

Γyj
∈hp(Γyx)

⌈
t

Tyj

⌉
× Cyj (6)

BLyx = max
Γyj

∈lpe(Γyx)
Mmaxyj (7)

The supply bound function (sbfyx(t)) is defined as
in (8) using the Explicit Deadline Periodic (EDP) resource
model [7] that generalizes the periodic resource model for
compositional analysis of hierarchical scheduling frameworks.
An EDP resource model is given by Ω = (Π,Θ,Δ), where
Θ is the units of the resource provided within Δ time units
(deadline) and with period Π of repetition. This way, map-
ping to our framework, a server is defined as Γyx = (Πyx ,Θyx ,
Δyx) = (Tyx , Cyx −Mmaxyx , RTyx −Mmaxyx). Note that
we consider the minimum capacity supplied by the server
in each instance to be given, in the worst case, by Cyx −
Mmaxyx , where Mmaxyx is the maximum idle time in-
serted at the end of each server execution to prevent possi-
ble overruns. Also, the response time of the parent server
assuming (Cyx) capacity is RTyx , hence the latest supply
of (Cyx −Mmaxyx) capacity from the parent server will be
RTyx−Mmaxyx . In fact, any packet that starts being trans-
mitted up to Mmaxyx before the end of the server capacity
will be able to finish within that same server instance with-
out causing an overrun. However, the analysis will consider
the transmission preempted at exactly Cyx −Mmaxyx and
continued in the following server instance, thus being safe
despite pessimistic. Only the last packet is left out of the
higher priority interference computation as shown in (4) and
(5). Nevertheless, because of the inserted idle time, this last
packet is still guaranteed to fit in the same server instance.

sbfyx(t) =

⎧⎨
⎩

bΘyx +max{0, t− a− bΠyx},
t ≥ Δyx −Θyx

0, otherwise
(8)

where

a = (Πyx +Δyx − 2Θyx), b =

⌊
(t− (Δyx −Θyx))

Πyx

⌋

with

Πyx = Tyx ,Θyx = Cyx −Mmaxyx

and Δyx = RTyx −Mmaxyx

The impact of the inserted idle-time can, in fact, be ac-
counted for in two ways. One is as presented above, where
we deduceMmax from the supply function and keep the real
request function. Another alternative was taken in our pre-
vious work [12] following the analysis for SIRAP [3] and [4],
in which the real supply function is kept and the request
function is increased by Mmax. Both approaches generate
safe worst-case response time estimates. However, the latter
approach, because of extending the request function, can po-
tentially include more higher priority interference leading to
worst-case response time estimates that are equal or more
pessimistic. This is shown further on, in the experiments
section.

For some cases when the value of Cyx is close to the
value of Mmaxyx , then the supply bound function will be
very pessimistic since Θyx = Cyx −Mmaxyx , while during
each server period it is possible to send at least a mini-
mum size packet Mminyx in the worst case. We can con-
clude that Θyx = max(Cyx −Mmaxyx ,Mminyx). If Θyx =
Mminyx then Δyx should be calculated based on Mminyx ,
i.e., Δyx = RTyx − Mminyx . In addition and if Θyx >=
Mminyx and Θyx < 2Mminyx then it might happen that
the remaining server capacity at time instant t∗ when
rbfyx(t

∗) = sbfPyx
(t∗) in (4), will not be enough to transmit

the last packet (less than Mminyx). One simple solution for
this problem is to consider the full preemption analysis for
this specific case by setting M last

yx = 0 in (4) and (5).
Finally, we do the schedulability assessment. A server hi-

erarchy and associated streams are deemed feasible if the
worst-case response time RTyx of every component Γyx ,
computed as in (4), is at most as long as the component
deadline Dyx (9). If this test fails for any component the
schedulability analysis fails and the current configuration
remains unchanged.

∀Γyx,y=2..NL,x=1..NCy , RTyx ≤ Dyx (9)

5. ALGORITHM TO DETERMINE THE RE-
SPONSE TIME

The response time of a server Γyx (4) is found using the
following algorithm, which checks the points of t where rbfyx
changes [5]. Let ĈP rbfyx

be the set of check points that the
algorithm uses, being defined as follows:

ĈP rbfyx
=

⋃
Γyj

∈hp(Γyx)

ĉpyj ∪ Tyx , (10)

where ĉpyj =
{
Tyj , 2Tyj , ...,myjTyj

}
,myj =

⌊
Tyx/Tyj

⌋
.

Therefore, ĉpyj contains the set of time instants, associated

to the component Γyj , during the interval [0, Tyx], where
rbfyx(t) changes.

The algorithm requires that the set of checking points

ĈP rbfyx
is sorted in an increasing order. Let ĈP

sorted

rbfyx
be

the sorted set, i.e., ĈP
sorted

rbfyx
= sort(ĈP rbfyx

).

5.1 Algorithm description
Algorithm 5.1 depicts the pseudo-code that allows com-

puting the response times of server components. Its op-
eration is illustrated in Figure 3. The algorithm takes as
inputs the component Γyx (with y > 1), its rbfyx(t), the

respective set of checkpoints ĈP rbfyx
and the sbfPyx

(t) of
its parent component, returning the respective worst case
response time RTyx .

189

Algorithm 5.1: Response Time()

input: Γyx , ĈP rbfyx (t), rbfyx(t), sbfPyx
(t)

output: RTyx

1 for each
(
ti ∈ ĈP rbfyx

)
2 if

(
sbfPyx

(ti) ≥ rbfyx(ti)
)

3 c =

⌊
rbfyx(ti)

ΘPyx

⌋
4 if

(
rbfyx(ti) = cΘPyx

)
5 wyx = cΠPyx

+ΔPyx
−ΘPyx

6 else
7 wyx = rbfyx(ti) + (c+ 1)ΠPyx

+ΔPyx
− (c+ 2)ΘPyx

8 end if
9 return (RTyx = wyx +M last

yx)
10 end if
11 return − 1

Firstly the algorithm finds the earliest instant ti within the

sorted set ĈP
sorted

rbfyx
such that sbfPyx

(ti) ≥ rbfyx(ti) (lines 1
and 2). When the test of line 2 succeeds, the resulting ti is
an upper bound for the actual response time as computed by
Equation 8, thus lines 3-8 compute the correct value. When
rbfyx(ti) fully uses the capacity (without inserted idle-time)
of the last instance of the parent server, the busy interval of
Γyx is computed by line 5. Otherwise, it is computed by line
7, which determines the instant corresponding to the frac-
tion of the last parent server instance that is necessary to
satisfy the request. c is used as an auxiliary variable in the
computation of the correct worst case response time, con-
taining the number of parent server instances fully used by
the component under test during its response time interval.
If line 2 is satisfied for any checkpoint, the algorithm returns
RTyx as computed in line 9, otherwise it returns a fail code
in line 11.

t�
�

�
�

�
2

Request bound
function

Supply bound
function

load

�

�2

��)1(b

�
�

�
�

�

�
�

�
�

�
2

2

�
�

�
�

�
�

2
)1

(b

�
�

�
�

�
�
)1

(b

�
�

�
�

�2

RT

o
it

*t

1�b 2�b

Figure 3: Response time.

5.2 Algorithm complexity
In order to evaluate the time complexity of Algorithm

5.1 we consider the worst case scenario that occurs when
the number of checkpoints is maximum, i.e., the periods of
higher priority components are relative primes, and all must
be computed, i.e., RTyx � Tyx . Let nhpyx be the num-

ber of components that belong to hp(Γyx). These compo-

nents can generate up to ncpyx =
∑nhpyx

j=1

(
myj + 1

)
check-

points. Therefore, the total computation effort generated
during the whole response time interval is, in the worst
case, ncpyx× ((computational effort of computing rbfyx(t)
and sbfPyx

(t)) + constant). From Equations 5 and 6, we
see that the computational demand for computing rbf for
a given time instant t is proportional to nhpyx . Moreover,
from Equation 8 we can see that the computational effort
for computing sbf for a given time t is constant. Therefore,
the computational effort of the response time algorithm is
ncpyx × ((nhpyx × constante) + constant. Noting that the
number of checkpoints is roughly proportional to the number
of higher priority components, the computational complex-
ity becomes O(nhp2yx), i.e., O(n2) where n is the number of
higher priority components associated with a given server.

6. PROOF-OF-CONCEPT IMPLEMENTA-
TION

As a proof-of-concept implementation, the multi-level hi-
erarchical server-based traffic scheduling framework described
above was implemented in the FTT-enabled Ethernet switch
[13].

The FTT-enabled Ethernet Switch is a custom FPGA-
based Ethernet switch that implements the Flexible Time-
Triggered (FTT) paradigm. This paradigm is based on a
master/multi-slave architecture. The communication is or-
ganized in an infinite succession of Elementary Cycles (ECs).
The ECs are divided in two windows – the synchronous
window and the asynchronous window. The former is used
for synchronous (periodic) communications, triggered by the
master via a poll message designated Trigger Message (TM).
The asynchronous window is used for asynchronous commu-
nications, which are autonomously generated by the slave
nodes. In this prototype implementation the multi-level hi-
erarchical server-based traffic scheduling framework is used
to manage the asynchronous traffic.

6.1 Implementation overview
The integration of the server framework within the FTT-

enabled Ethernet Switch takes advantage of the hardware/
software co-design approach used in the switch development.
All the low-level server and stream management functions
are implemented in hardware (Figure 4) in order to increase
the responsiveness of the system. Namely, the scheduling
of the asynchronous messages is performed locally, in each
output port, using dedicated hardware resources. From the
operational and implementation point of view, a stream is a
dedicated channel, which can aggregate a configurable num-
ber of data flows from different input ports. It comprises
exclusive memory resources, reserved in the central memory,
and it can be connected to a configurable number of output
ports, allowing multicast and broadcast communications, al-
though in the scope of this paper only unicast communica-
tions are considered. Each stream can have a configurable
set of associated servers, which is independent from port to
port. The configuration of the server and stream hierarchy
can be freely defined at run-time, without service disrup-
tion. The reconfiguration is triggered using dedicated FTT
control messages. The amount of resources (e.g. memory,
logical blocks) in any FPGA is limited and thus the total

190

amount of supported servers and streams is limited. No
other restrictions to the server topology apply.

FTT-enabled Ethernet Switch

Memory

Stream

In
pu
tP
or
ts

O
ut
pu
tP
or
ts

C
on
ne
ct
io
n

m
at
rix

C
on
ne
ct
io
n

M
at
rix

Figure 4: FTT-enabled Ethernet Switch.

The configuration and adaptation of the server hierarchy
is managed by a dedicated configuration manager module,
which can be executed inside the switch itself or in any node
that is part of the network. The configuration manager re-
ceives all the server and stream management requests, ap-
plies the schedulability analysis algorithm and, if feasible,
sends the appropriate commands to reconfigure the switch
server scheduling hardware [14].

6.2 Analysis adaptation
As mentioned above, we use the hierarchical server frame-

work to manage the FTT asynchronous window, which is
a polling server and it is represented by the component
Γ11 (Figure 1) in the server hierarchy. Figure 5 illustrates
the corresponding supply-bound function, as seen by level
2 components. The worst-case scenario happens when a
packet transmission request occurs before the beginning of
the TM in such a way that it does not fit before the TM and
such packet has the maximum allowed size (Mmax11) thus
generating the maximum inserted idle-time (iit). Let LEC
be the EC period and LAW the minimum length of the
asynchronous window, which are FTT configuration param-
eters. The corresponding EDP resource model that mimics
the asynchronous window supply-bound function is given by
Ω = (Π,Θ,Δ), with Π11 = LEC, Θ11 = LAW − Mmax11

and Δ11 = Π11 .

T
M Async. Window T

M Async. WindowSync.
Window

Sync.
Windowiit iit iit

LEC LAW

Figure 5: Asynchronous Window.

7. EXPERIMENTAL VALIDATION
This section presents the results obtained from our pro-

totype implementation based on an FTT-enabled Ethernet

Switch. Different experiments have been carried out to as-
sess the correctness and degree of pessimism of the analysis,
as well as the conformity of the implementation.

Server-based Ethernet Switch

Node A Node B Node C

A B C D

Flow 2
Flow 3

Node D

Flow 1

Figure 6: Experimental setup.

Figure 6 shows the experimental setup which represents
two distributed control applications whose controllers run
on node B. This node also controls the actuators with direct
I/O. The applications receive remote sensing via three time-
constrained sporadic data flows that are tagged as asyn-
chronous traffic by the FTT switch. These flows are man-
aged by a hierarchy of periodic servers similar to that pre-
sented in Figure 1. Each application is handled by one server
at the second level of the hierarchy, Γ21 and Γ22 , respec-
tively. The latter handles flow 3 (Γ33). The former is fur-
ther divided in two other servers, Γ31 and Γ32 , which handle
flows 1 (Γ41) and 2 (Γ42), respectively. The parameters of
the servers and flows are shown in Table 1. Flow 1 has two
different configurations: a) one single Ethernet packet in-
stances, and b) 3 packets per instance, which are sent in a
burst. Finally, the FTT-enabled switch is configured with
LEC = 1000µs and LAW = 700µs.

C T/Tmit P Mmax Mmin RT

Γ11 700 1000 - 50 25 -
Γ21 400 3000 Γ11 50 25 1000
Γ22 250 2000 Γ11 25 25 650
Γ31 100 8000 Γ21 50 50 3650
Γ32 250 4000 Γ21 25 25 3550

Γ33 25 2200 Γ22 25 25 2200
Γ42 25 7100 Γ32 25 25 7100
Γ41a) 50 25000 Γ31 50 50 11550
Γ41b) 150 25000 Γ31 50 50 19600

Table 1: Experiment 1 – hierarchy parameters in µs

7.1 Experiment 1
In this experiment we used configuration a) of flow 1 (Γ41)

and we logged the response times of 37000 single packet
instances corresponding to approximately 15min of consec-
utive operation. We used the parameters for servers and
streams shown in Table 1. We started by computing Mmax
and Mmin along the hierarchy, from bottom to top, thus
starting from the streams Γ41 , Γ42 and Γ33 and up to the
top server Γ11 . The resulting values are also shown in the
table.

Then we carried out the schedulability analysis from top
to bottom, computing the worst-case response times RT for
each server and stream, also shown in Table 1, and compar-
ing with the respective deadlines. The analysis deemed this

191

hierarchy schedulable with the worst-case response time for
flow 1 being upper bounded to 11550µs.

The actual histogram of the logged response-times for all
instances is shown in Figure 7. The maximum observed
response time is 8307µs, which is below the upper bound
provided by the analysis. The difference between both values
can be explained by two main reasons. On one hand, the
experiment might have not generated the real worst-case
situation and on the other hand, the analysis still includes a
few pessimistic assumptions with respect to the worst-case
scenario such as the actual execution pattern of the servers
and the inserted idle-time.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

700

Time (us)

N
um

be
r

of
 p

ac
ke

ts

Figure 7: Response time histogram of Γ41a).

7.2 Experiment 2
This experiment used configuration b) of flow 1 (Γ41)

and we logged the response times of 130000 multipacket in-
stances corresponding to approximately 54min of consecu-
tive operation. Again, we used the parameters for servers
and streams shown in Table 1. With respect to the previous
experiment there was no change inMmax andMmin. How-
ever, each instance of flow 1 in this configuration required
two instances of the parent server Γ31 to be transmitted.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 10
4

0

500

1000

1500

2000

2500

Time (us)

N
um

be
r

of
 p

ac
ke

ts

Figure 8: Response time histogram of Γ41b).

Again, the schedulability analysis deemed this hierarchy
schedulable. The only change with respect to the previ-
ous case was the response time for flow 1 being now upper

bounded to 19600µs. Figure 8 shows the histogram of the
observed response times of all instances. The maximum ob-
served response time was 16564µs, which is still below the
upper bound provided by the analysis.

7.3 Experiment 3
Finally, we carried out an experiment to compare the level

of pessimism embodied in our analysis and in the analysis
in [12]. For this purpose we consider the set of components
in Table 2 and we analyze such hierarchy with both analysis.
The results are also listed in the same table and we can see
that both analysis guarantee the schedulability of the set.
For this example, the response times obtained by our analy-
sis (RT1) are substantially shorter than those obtained with
the analysis in [12] (RT2). However, we cannot guarantee
a similar level of improvement in the general case, due to
dependency on the actual server hierarchy and streams, but
it is guaranteed that our analysis will always provide equal
or better results than the previous one in [12].

C T/Tmit P Mmax Mmin RT1 RT2

Γ11 600 1000 - 150 50 - -
Γ21 350 3000 Γ11 150 80 1025 1725
Γ22 125 2000 Γ11 100 50 825 975
Γ31 200 8000 Γ21 100 80 6675 7475
Γ32 200 7500 Γ21 150 100 3775 7425

Γ33 150 15000 Γ22 100 50 4750 12950
Γ42 250 50000 Γ32 150 100 18625 44875
Γ41 280 35000 Γ31 100 80 22555 31355

Table 2: Experiment 3 – hierarchy parameters in µs

8. CONCLUSIONS
Current Real-Time Ethernet protocols do not allow effi-

cient server-based scheduling policies as those developed for
CPU scheduling, impairing the use of component-oriented
design technologies in networked embedded systems. Such
limitation fostered the recent proposal of a multi-level hier-
archical server architecture for Ethernet switches. This ar-
chitecture provides a dynamically reconfigurable hierarchi-
cal composition of servers that allows to divide the network
bandwidth in a hierarchical way, creating virtual channels
with temporal isolation among them, thus supporting com-
posability in the time domain. This paper presents a novel
response-time based schedulability analysis framework that
takes into consideration the impact of the hierarchy and of
the server operational mechanisms into the schedulability.
This test, which complexity is shown to be approximately
O(n2) for each task, with n being the number of higher prior-
ity components, is part of an admission control for dynamic
resource reservation. In addition to the analytical frame-
work, the paper also presents a prototype implementation
based on an FTT-enabled Ethernet Switch that validates
the analysis and the multi-level hierarchical server architec-
ture and shows that the our analysis reduces the pessimism
of previous analysis developed for similar frameworks.

9. ACKNOWLEDGMENTS
This work was partially supported by the iLAND project,

call 2008-1 of the EU ARTEMIS JU Programme, by the Eu-

192

ropean Community through the ICT NoE 214373 ArtistDe-
sign and program FEDER through “Programa Operacional
Factores de Competitividade – COMPETE”, by the Por-
tuguese Government through“FCT – Fundação para a Ciên-
cia e a Tecnologia” in the scope of project FCOMP-01-0124-
FEDER-007220 and Ph.D. grant - SFRH/BD/32814/2006
and by the Swedish Foundation for Strategic Research (SSF),
the Swedish Research Council.

10. REFERENCES
[1] Ethernet Powerlink - online information.

http://www.ethernet-powerlink.org/.

[2] L. Almeida and p. Pedreiras. Scheduling within
temporal partitions: response-time analyisis and
server design. In Proceedings of the Fourth ACM
International Conference on Embedded Software,
September 2004.

[3] M. Behnam, T. Nolte, and R. Bril. SIRAP: A
synchronization Protocol for Hierarchical Resource
Sharing in Real-Time Open Systems. In Proceedings of
the Seventh ACM International Conference on
Embedded Software, October 2007.

[4] M. Behnam, T. Nolte, and R. Bril. Refining SIRAP
with a dedicated resource ceiling for self-blocking. In
Proceedings of the Nineth ACM International
Conference on Embedded Software, October 2009.

[5] E. Bini and G. Buttazzo. The space of rate monotonic
schedulability. In Proceedings of IEEE International
Real-Time Systems Symposium, December 2002.

[6] L. Deng and J. Liu. Scheduling real-time applications
in an open enviroment. In Proceedings of IEEE
International Real-Time Systems Symposium,
December 1997.

[7] A. Easwaran, M. Anand, and I. Lee. Compositional
Analysis Framework using EDP Resource Models. In
Proceedings of IEEE International Real-Time Systems
Symposium, December 2007.

[8] T. Kuo and C. Li. A fixed-priority-driven open
enviroment for real-time applications. In Proceedings
of IEEE International Real-Time Systems Symposium,
December 1999.

[9] J. Loeser and H. Haertig. Low-Latency Hard
Real-Time Communication over Switched Ethernet. In
Proceedings of IEEE Euromicro Conference on
Real-Time Systems, 2004.

[10] P. Pedreiras and L. Almeida. Combining
Event-triggered and Time-triggered Traffic in
FTT-CAN: Analysis of the Asynchronous Messaging
System. In Proceedings of IEEE Workshop on Factory
Communication Systems, September 2000.

[11] PROFInet. Real-Time PROFInet IRT.
http://www.profibus.com/pn.

[12] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and
L. Almeida. Schedulability Analysis for Multi-level
Hierarchical Server Composition in Ethernet
Networks. In Presentation at the Workshop on
Real-Time Networks, July 2010.

[13] R. Santos, P. Pedreiras, L. Almeida, A. Vieira,
T. Nolte, R. Marau, and A. Oliveira. Flexible,
Efficient and Robust Real-Time Communication with
Server-based Ethernet Switching. In Proceedings of
IEEE Workshop on Factory Communication Systems,
May 2010.

[14] R. Santos, A. Vieira, R. Marau, P. Pedreiras,
A. Oliveira, L. Almeida, and T. Nolte. Improving the
efficiency of Ethernet switchess for real-time
communication. In Proceedings of Frist International
Workshop on Adaptive Resource Management, April
2010.

[15] I. Shin and I. Lee. Periodic resource model for
compositional real-time guarantees. In Proceedings of
IEEE International Real-Time Systems Symposium,
December 2003.

[16] Q. Wang, S. Gopalakrishnan, X. Liu, and L. Sha. A
Switch Design for Real-Time Industrial Networks. In
Proceedings of IEEE Real-Time and Embedded
Technology and Applications Symposium, 2008.

193

