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Abstract

Industrial media control applications require on-line

QoS management services to dynamically allocate the

bandwidth among the entities that compose the distributed

application. The bandwidth distribution mechanism as-

signs bandwidth to each entity based on the QoS require-

ments and the current state of the network. However,

mapping that bandwidth into operational parameters that

serve the scheduling model of the network is not straight-

forward. Due to systems constraints, this is not a bijective

function, therefore multiple solutions may mathematically

represent the same bandwidth value but lead to different

application performance levels. This paper presents two

mapping algorithms and analyzes their performance in

this context. The obtained results show that the selection

of this mapping algorithm is highly relevant for the appli-

cation performance.

1 Introduction and related work

Distributed multimedia applications are widely used in

diverse domains, like home applications [2], wireless mul-

timedia sensor networks [6][17], industrial applications,

surveillance [10], etc. These media control applications

(MCA) [4] can have soft and/or hard real-time require-

ments, depending on the specific application type. Typi-

cally, each video source i defines a set of quality of ser-

vice (QoS) requirements (e.g. frame-rate, compression

level), demanding appropriate bandwidth (wi) reserva-

tion. On the network side, wi is a strict bandwidth reser-

vation that must be enforced and cannot be surpassed,

with the penalty for interfering with other real-time data

sources. In previous works [9], the authors used the dy-

namic QoS management features of the Flexible Time-

Triggered communication over Switched Ethernet Proto-

col (FTT-SE) [5] to provide on-line real-time multimedia

QoS management. In this framework the QoS manage-

ment is multidimensional, permitting the dynamic adap-

tation of the compression rate and the allocated network

bandwidth, according to the instantaneous application re-

quirements.

The bandwidth assigned to each video stream is even-

tually mapped into channel operational parameters, i.e. to

a given period (T ) and image size (C). However, the con-

version between bandwidth and network operational pa-

rameters is not univocal. In fact, different (C,T ) tuples,
assigned according to different mapping strategies, may

correspond to the same bandwidth while leading to differ-

ent application level behavior. Determining the mapping

strategy that better suits a given application requirement

is still an open question. Multimedia applications are very

dependent of the scenario they are fitting to, so there is no

general rule to specify how this mapping should be con-

ducted.

The basic decision that must be handled by these map-

ping policies is whether it is better to use shorter periods

with lower image sizes, or use larger periods and corre-

spondingly larger image sizes. This trade-off has already

been analyzed in the literature, for general multimedia

scenarios using protocols such as MPEG to code video

over a GOP (Group of Pictures, typically between 9 and

12 frames). In this general scenario, [13] and [12] the

frame drops are selected according to the minimum dis-

tortion criterium, which requires storage of all the GOP

before its transmission. In [1] control theory is used to

avoid the over and under utilization of resources. As in

the previous case, this method introduces and additional

latency of one GOP. In [11] this trade-off is addressed an-

alyzing only video compression, without considering the

implied network challenges and their limitations.

Many Media Control Applications are delay sensitive,

so the above methods are not adequate, since they cause

additional delays. This paper presents and evaluates two

different algorithms to map bandwidth onto network oper-

ational parameters in the scope of the dynamic QoS man-

agement framework previously developed by the authors



Figure 1. Generic System Architecture

[9]. Each one of the algorithms favors one of the opera-

tional components (minimize the period or maximize the

image size). The rationale behind these algorithms is that

for more dynamic image sources (with frequent changes

in the scenario), it may be preferable to have a higher

frame-rate, implying higher compression, while for more

static image sources it can be better to use a lower frame

rate and a correspondingly lower compression ratio.

The experimental evaluation method of the algorithms

proposed in this paper follows the point of view of the

Human Visual System (HVS). To obtain a quality eval-

uation of a set of videos there are subjective and objec-

tive methods [14]. In the subjective methods, the videos

are shown to a set of observers who have to evaluate the

quality, and after a statistical process, a quality measure-

ment is obtained. This is the method that gives the best

results according to the HVS but it is slow and expensive.

The objective methods are based on the quality evalua-

tion through equations based on parameters obtained from

the original and distorted video (full reference). The most

used metric is the Peak Signal to Noise Ratio (PSNR).

As this has a poor correlation with the HVS [15], other

metrics based on the measurement of structural error have

been developed, such as SSIM (Structural Similarity In-

dex Measurement) [16][8], which is also used as a metric

in this paper.

The remainder of the paper is organized as follows.

Section 2 presents the system and QoS models. Sec-

tion 3 introduces the two mapping algorithms proposed

in this paper. Section 4 presents the experimental results

obtained with different stream types and network loads.

Conclusions and future work are covered in Section 5.

2 System and QoS models

The generic system architecture considered in this pa-

per is depicted in Fig.1. The central QoS manager is re-

sponsible for receiving the QoS requests for the diverse

data sources, whether they are multimedia-related or not,

and, in function of the instantaneous requests and avail-

able resources, allocates bandwidth to each real-time data

source. Each data source comprises a QoS Adaptation

Layer, which inter-operates with the QoS manager and

fits the video stream data to the assigned bandwidth. This

adaptation is done firstly by choosing appropriate quan-

tification levels. The data source QoS Adaptation Layer

may initiate a QoS renegotiation whenever the compres-

sion level falls out of the pre-defined range. Data sinks

also comprise a QoS adaptation Layer and may also initi-

ate QoS re-negotiations, e.g. in answer to application re-

quests. Access to the communication channel is mediated

by a real-time communication protocol, which is respon-

sible for the timeliness of the communications.

2.1 System Model

The system model comprises a scenario with p dis-

tributed multimedia sources M ≡ {Mi, i = 1..p} which
send streams to c sinks, through a real-time local area net-

work. This network supports the requirements of dynamic

distributed multimedia applications in industrial environ-

ments, namely dynamic traffic scheduling, online admis-

sion control and dynamic QoS management. Each multi-

media source, at the network level, can be characterized

by:

Mnet
i = {Pri, Ci,T

j
i}

net (1)

where Pri is a priority that reflects the relative stream im-

portance,Ci ≡
[

Cl
i , C

u
i

]

is the range of possible transmis-

sion buffer sizes (i.e. image frame size) and T
j
i , j = 1..ni

is the set of ni transmission periods (i.e. the frame-

rates) supported by the data source. The QoS system may

change the quantification level qi within Qi ≡
[

qli, q
u
i

]

to fit the images into the allocated buffer size. Values that

fall outside of the compression range are undesirable since

they lead to lower than desired image quality (compres-

sion too high) or to a inefficient utilization of the commu-

nication channel (compression too low). This adaptation

is made based on the q model and the adaptation process

shown in [9]. Through this model, the quantification level

of current frame k (qk) is used to estimate the cuantifica-

tion value for the next frame (qk+1). If the bandwidth falls

inside a target window, then qk+1 = qk, otherwise the q
adaptation process is invoked.

The network communication protocol provides a to-

tal bandwidth US , which is shared among the p real-time

data sources. Note that US is an upper-bound bandwidth

that assures the timeliness of the real-time communication

channels, depending e.g. on the particular scheduling pol-

icy employed. Furthermore, US is shared among all real-

time data sources, whether they are multimedia-related or

not. For the sake of simplicity, and without loss of gener-

ality, from this point on it is assumed that all data sources

and sinks in the system are multimedia-related.

2.2 Bandwidth distribution

Each real-time data source demands a given desired

bandwidthwd
i , which depends both on the application de-

mands and on the characteristics of the video streams. wd
i



is constrained byMi, i.e.:

wmin
i =

Cl
i

maxj=1..ni
(T j

i
)

wmax
i =

Cu
i

minj=1..ni
(T j

i
)

wmin
i ≤ wd

i ≤ wmax
i , ∀i = 1..p

(2)

The QoS manager firstly attempts to assign the desired

bandwidth to all data sources. However, the channel ca-

pacity may not be sufficient to satisfy all the channel re-

quests, i.e.:
∑

i=1..p

wd
i = Ud > US (3)

Whenever Equation 3 holds, the system is overloaded

and it necessary to distribute the available bandwidth

among the different data sources according to a given

criterium. This procedure is carried out by a bandwidth

distribution algorithm, which takes as inputs US , M and

W
d = {wd

1 ..w
d
p} and distributes US for each multime-

dia source. The output of the distribution algorithm is the

set Wqos = {wqos
1 , ..., wqos

i , ...., wqos
p }, where wqos

i rep-

resents the bandwidth actually assigned to stream i.

Algorithm2.1: W
qos = wDistribution(M,Wd, US)

comment: distributes the system bandwidth capacity

Uspare ← US −
∑

∀iw
min
i

∑

∀i Pri = 1











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










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


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

for eachMi ∈M, sorted by Pri
do























if (wd
i − wmin

i )Pri < Uspare

then w′
i ← (wd

i − wmin
i )Pri

else w′

i ← Uspare

Uspare ← Uspare − w′

i

wqos
i ← wmin

i + w′
i

while (Uspare > ε)
return (Wqos = {wqos

1 , . . . , wqos
n })

Algorithm 2.1 shows a fixed priority-based policy im-

plemented in this work, which is slightly different from

the algorithm used in [9]. The algorithm starts by com-

puting the amount of shareable bandwidth Uspare, i.e.

the bandwidth remaining after satisfying the minimum re-

quirements for all data sources. Uspare is then divided

and assigned to the data streams according to their indi-

vidual priorities. Starting from the one with higher prior-

ity, the excess bandwidth is computed (i.e., wd
i − wmin

i )

and weighted with the data stream priority. The demanded

bandwidth is assigned to the data stream if not exceeding

the system remaining capacity (Uspare). Otherwise, it is

assigned the system remaining bandwidth. On each itera-

tion the allocated bandwidth is subtracted to Uspare. The

process repeates until the remaining bandwidth reaches a

negligible value, i.e. is lower than (ε). Depending on the

relation between the available and demanded bandwidth,

some channels may get the requested bandwidth, others

may get just their minimum bandwidth while others may

get an intermediate value of bandwidth between the pre-

vious two cases.

2.3 Prototype platform

The mapping algorithms presented in this paper have

been integrated in the Dynamic QoS management over

FTT-SE framework [9], previously developed by the au-

thors. This framework is based on the Flexible Time-

Triggered (FTT) over Switched Ethernet (FTT-SE) pro-

tocol [3][5]. This is a research real-time protocol operat-

ing over Switched Ethernet networks, that supports syn-

chronous (i.e. periodic) and asynchronous (i.e. sporadic)

real-time traffic, as well as non-real-time traffic. The syn-

chronous and asynchronous traffic is transmitted within

separate windows with the former typically having prior-

ity over the latter. The non real-time traffic is scheduled

in the background, within the asynchronous window. For

the synchronous traffic, which is the only one relevant to

the scope of this paper, a master/multi-slave transmission

control technique is used, according to which a master ad-

dresses several slaves with a single poll message, consid-

erably alleviating the protocol overhead when compared

to the conventional master-slave techniques. The commu-

nication is organized in fixed duration slots called Elemen-

tary Cycles (ECs). Each EC starts with one poll message

sent by the master, called Trigger Message (TM). The TM

contains the schedule for that particular EC. Only the mes-

sages that fit within an EC are scheduled by the master,

thus memory overflows inside the switch are completely

avoided for such kinds of traffic.

The traffic is scheduled dynamically, i.e. for each EC

the Master checks the properties of the messages active

at that particular instant and schedules them. Therefore,

changing the message set (adding, removing or chang-

ing the properties of messages) only requires updating

the message properties database. To prevent changes

that jeopardize the timeliness of the real-time traffic, all

change request are subject to an admission control and re-

jected, if necessary. Finally, the Master also integrates a

QoS manager. QoS changes are firstly checked for feasi-

bility. If feasible, appropriate QoS distribution algorithms

are applied and the message set updated. Thanks to the

centralized architecture, the operations above mentioned

are local to the Master node, which simplifies the process

considerably. This protocol matches the requirements of

dynamic distributed multimedia applications in industrial

environments stated in Section 2.1. Further details about

the protocol and, in particular, the QoS management sub-

system, can be found in [9].



3 Bandwidth to (C,T) mapping

Algorithm3.1: {(Ci, Ti)∀i} = uCTmap(Wqos,M)

comment: succ(Ti) is the successor of Ti in the

monotonically increasing set TFTT
i

for eachMi ∈M

do



































Ti = max
{

T j
i , ∀j=1..ni

: T j
i ≤ Cu

i /w
qos
i

}

Ci = wqos
i ∗ Ti

if Ci < Cl
i

then

{

Ti = succ(Ti)
Ci = Cu

i

wi =
Ci

Ti

return ((Ci, Ti)∀i,W = {w1, . . . , wn})

The bandwidth allocation Algorithm 2.1 assigns to each

data source i a given bandwidthwqos
i . However, this band-

width must be converted into network operational param-

eters, that is, into a tuple (Ci, T
j
i ), which corresponds to

a given image frame-rate and image size. This tuple is

is computed in the QoS Adaptation Layer to conform the

data generated with the channel characteristics.

In the general case this conversion is not univocal, pos-

sibly existing different (Ci, Ti) pairs that satisfy wqos
i ≥

Ci/Ti. In practical terms, different frame-rates and image

sizes may generate the same bandwidth. While mathe-

matically equivalent, these tuples may impact on the ap-

plication performance, and thus it is necessary to develop

appropriate mapping algorithms. Each of the algorithms

introduced in this section favors one of the parameters,

C or T , in order to enable the study of its influence in

the transmitted video quality. Intuitively, adopting lower

period values, i.e. using higher frame-rate, can be advan-

tageous in the case of more dynamic images, since lower

frame-rates may lead to the loss of important features of

the video stream. Conversely, for more static images, i.e.

when the images do not change significantly over time,

it may be more useful to the application to use a lower

frame-rate and transmit each individual image with higher

quality.

Algorithm3.2: {(Ci, Ti)∀i} = uCTmap(Wqos,M)

for eachMi ∈M

do



























Ti = min
{

T j
i , ∀j=1..ni

: T j
i ≥ Cl

i/w
qos
i

}

Ci = wqos
i ∗ Ti

if Ci > Cu
i

then Ci = Cu
i

wi =
Ci

Ti

return ((Ci, Ti)∀i,W = {w1, . . . , wn})

Mapping Algorithm 3.1, which was originally used in

[9], attempts to maximize Ci. To achieve this goal, Ci

is fixed at the highest possible value and then the highest

T that satisfies or exceeds the assigned bandwidth wqos
i

is computed. However, since T is a discrete set, there

might not exist an exact match solution. In this case Ti

is lower than desired and thus Ci is recomputed accord-

ingly, since the assigned bandwidth cannot be exceeded.

If the computed Ci violates the lower bound (Cl
i), then a

higher period must be selected and the highest frame size

is used. Note that in this latter case wi < wqos
i . This

procedure is executed for all data sources. The interested

reader can resort to [9] for a more detailed explanation of

this algorithm. Mapping Algorithm 3.2 attempts to maxi-

mize the frame-rate, i.e., use the minimum Ti. To achieve

this goal, firstly it computes the period Ti that fits best,

without exceeding, wqos
i , considering the minimum pos-

sible frame-size (Cl
i ). As in the previous algorithm, the

discrete nature of periods may not allow to obtain a pe-

riod that exactly matches wqos
i for Cl

i . In that case Ci is

recomputed, to allow a full use of the assigned bandwidth.

Also in this case it may happen that, as a result of the pre-

vious computation, the constraints on Ci are violated. In

that case Ci is assigned with the highest possible Cu
i , to

approach the allocated bandwidth as much as possible, but

wi < wqos
i .

4 Experimental results

This section presents simulation results that evaluate

the relative performance of the mapping algorithms pre-

sented in Section 3 with different types of video streams.

The simulation results are based in the simulation envi-

ronment described in Section 2.3, which emulates the be-

havior of the FTT-SE protocol.

4.1 Video stream characterization

To analyze the differences in the bandwidth mapping

algorithms, six different streams with different QoS pa-

rameters are used [7][9]. These streams are representa-

tive of industrial monitoring applications, showing robots

and other industrial tasks that represent different video

applications requirements. These are medium resolution

streams, captured at 25 frames per second (T=40 ms),

having each one 8,000 frames. Details of how streams

are captured, and particular aspects of the scenes can be

found in [7]. The stream QoS parameters used in the ex-

periments are shown in Table 1. The full specification of

the QoS parameters includes ranges for q, T and C, as

well as the (fixed) priority Pr. The streams period varies

between T l and T u, with a resolution of 40ms.
Video streams can be classified as high motion or

low motion, depending on how often significant changes

occur in the scenes. As the trade-off between C and

T in the bandwidth mapping can be influenced by the

stream motion class, it is necessary to classify the streams.

StreamsM1,M3 andM4 are considered to be highmotion

streams. These streams are captured in a car production

plant, showing assembly robots. The movement of the



Table 1. Stream properties for experiments
M1 M2 M3 M4 M5 M6

ql 30 25 20 25 20 20

qu 70 85 85 75 70 60

T l(ms) 40 40 40 80 40 80

T u(ms) 400 400 280 240 400 240

Cl(kB) 25 20 30 20 30 15

Cu(kB) 90 70 80 90 95 60

Pr 0.21 0.20 0.19 0.18 0.12 0.10

Motion H L H H L L

robots and their operations, like welding pieces, present

significant changes from frame to frame. StreamsM2,M5

and M6 are classified as low motion streams, since they

are captured by fixed cameras and the industrial scenes

monitored have generally low activity.

In the experimentsUS varies from 5Mbps to 25 Mbps,

in 5 Mbps steps, to model different load conditions. In

each experiment a total of 240,000 frames was transmit-

ted. Image size, period and compression level, as well as

SSIM, PSNR and Dropped Frames (DrF) are computed

both individually and in average. SSIM is considered by

recent studies as the metric with the strongest correlation

with HVS. It is necessary to mention here, that a differ-

ence of 0.01 in this index can represent around 1dB in

PSNR measurement, so small differences in SSIM figures

could represent important differences from the point of

view of the video quality.

4.2 Results Analysis

Table 2 contains the results obtained with Algorithm

3.1 (Exp. 1), while Table 3 depicts the results obtained

with Algorithm 3.2 (Exp. 2). The first general comment

that can be made is that, as expected, ĉ (mean size C of

frames for one stream, measured in kilo-bytes) is higher

in Exp. 1 than in Exp. 2, whereas t̂ (mean T for frames

for one stream, measured in miliseconds) is lower in Exp.

2 than in Exp. 1. Therefore, each one of the algorithms

in fact favors the parameter it is intended to. It can also

be observed that the mean quantification factor q̂ is lower

in Exp. 2 than in Exp. 1. This behavior was also ex-

pected since, for the same bandwidth, using a lower T
implies reducingC, which is achieved with a reduction in

q. Therefore, both algorithms produced results consistent

and logically compatible with the expected behavior.

The differences between ĉ and t̂ are quite significant

in all scenarios except for the US= 5Mbps case. When

US=5Mbps, the system is heavily overloaded, therefore

the solution space is very limited and consequently both

algorithms produce very similar results. Only stream M2

has a more noticeable difference. As this stream is classi-

fied as low motion, the increase in the transmission period

does not compensate the reduction in the size that the sys-

tem can use for their codification, so Algorithm 3.1 give

slightly better results.

Another boundary scenario is for US=25Mbps. In this

case the available bandwidth is almost enough to satisfy

all the stream demands. The differences are not dra-

matic but in some cases are still noticeable. Low motion

streams, like M2 and M6, have better results with Algo-

rithm 3.1, increasing the quality in 2 and 1 dB for PSNR,

and around 0.02 in SSIM metric. High speed streams M1

and M4 perform better with Algorithm 3.2, with a differ-

ence around 0.5dB and 1dB in the PSNR, and around 0.01

in the SSIM metric. M3 performed contrarily to the ex-

pectations, since it is a high motion stream but performed

better with Algorithm 3.1. It can be seen that both algo-

rithms assigned to this stream the very same average pe-

riod (80ms), but Algorithm 3.1 assigned an higher image

size. Nevertheless the performance degradation is resid-

ual.

ForUS=10Mbps andUS=15Mbps there are noticeable

differences in the stream set, except for M1. Being this

one highest priority stream, both algorithms give simi-

lar (C,T) values. For US=20Mbps the algorithms per-

form differently for all messages. Regarding the qual-

ity metrics, we saw a clear tendency for each algorithm

to perform better in one or the other scenario, accord-

ing with the type of the streams. There are however a

few exceptions, which can be justified with the non lin-

earity of the mapping (periods are discrete and the im-

age size is constrained). To have a quantitative idea,

lets us to define a threshold of relevance of 0.005 for

SSIM and 0.25dB for PSNR, and consider together US =
10Mbps, 15Mbps, 20Mbps. For the PSNR metric, in 10

out of the 18 cases, the algorithm perform better in the

stream they are supposed to, in 5 cases there is an inver-

sion and in 3 cases the difference is not relevant. Regard-

ing SSIM, in 9 cases the algorithms favor the scenarios

they are supposed to, in 2 cases there is an inversion and

in 7 cases the difference is not relevant.

4.3 Hybrid algorithm

The QoS management model enables the combination

of different mapping algorithms. To explore this capacity,

we realized Experiment 3, in which Algorithm 3.1 is used

for streams M2, M5 and M6 whereas Algorithm 3.2 is

used for the other streams. The results obtained are shown

in Table 4. We saw a general tendency for the adaptive

algorithm to approach the results that can be achievedwith

the more suitable algorithm, i.e., the adaptive algorithm

gives the best results. Globally these experiments show

similar results for US=10Mb and a slight improvement

for US=15Mb and US=25Mb. However, for US=20Mb

this slight improvement is for Alg. 3.1.

These results are influenced by the number of frame

drops produced, which has an important influence on the

video quality. It is expected that lower values of T in-

crease the probability of frame drops, and this rule is sat-

isfied generally in Exp. 1 and Exp. 2. However, even rela-

tively similar values of T can produce different global re-

sults as changes on one streammay impact on all the other

streams, as in stream M1 for US=25 with Alg. 3.1. This



Table 2. Results for exp. 1 (Alg.3.1)
US=5 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 36.4 400 55 0.873 27.26 15

M2 28.4 400 46 0.909 29.87 9

M3 36.0 280 37 0.873 26.78 28

M4 25.6 240 33 0.850 26.70 35

M5 29.9 400 56 0.912 30.89 3

M6 20.8 240 23 0.894 28.50 22

mean 29.5 326 41 0.880 28.33 18

US=10 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 36.3 128 56 0.9121 30.14 27

M2 46.5 204 75 0.929 31.98 2

M3 53.4 240 79 0.902 29.41 7

M4 45.5 240 69 0.868 27.65 13

M5 36.9 394 68 0.915 31.14 1

M6 24.2 240 29 0.906 29.06 24

mean 40.5 241 62.7 0.905 29.89 12.3

US=15 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 37.6 80 56 0.930 31.79 33

M2 44.2 120 73 0.938 31.72 2

M3 53.4 160 78 0.920 31.76 27

M4 45.1 200 69 0.876 28.28 24

M5 31.9 235 60 0.920 31.80 3

M6 32.5 240 48 0.920 29.26 1

mean 40.7 172.6 64 0.917 31.11 15

US=20 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 41.8 80 65 0.935 32.24 32

M2 40.0 80 72 0.946 34.00 2

M3 40.5 80 59 0.952 35.09 27

M4 45.2 160 70 0.887 29.04 22

M5 34.4 154 63 0.928 32.68 4

M6 36.4 240 58 0.923 30.25 0

mean 39.7 132 64 0.929 32.21 14.5

US=25 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 31.9 42 45 0.944 33.17 541

M2 50.5 80 78 0.950 34.47 1

M3 54.2 80 80 0.954 37.34 22

M4 36.4 123 56 0.895 29.59 41

M5 32.1 120 60 0.930 32.93 2

M6 35.8 240 56 0.923 30.23 0

mean 40.15 114.3 62.5 0.933 32.95 101

also explains the differences between Exp. 1 and Exp. 3.

4.4 Final remarks on the experimental results

The intensive experimentation done confirms that the

performance of mapping algorithms is indeed correlated

with the stream properties. However, the observed differ-

ences are not dramatic. This is mainly due to the contents

of the high motion streams used in the experiments. These

streams were obtained in real plants and only exhibit high

motion contents during certain time periods. Figure 2

shows the evolution of C (bytes), T (msec.) and q for

each frame of high-motion stream M3. For comparison

purposes, Figure 3 shows the C, T and q for each frame of

low-motion stream M5. As can be seen, strong changes

in C of stream M3 only occur during certain periods of

time. For extended time periods, the behavior of stream

Table 3. Results for exp. 2 (Alg.3.2)
US=5 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 34.8 347 20 0.874 27.27 42

M2 22.1 343 30 0.898 29.53 13

M3 36.0 279 37 0.873 26.81 42

M4 25.9 239 33 0.851 26.72 41

M5 28.0 399 51 0.911 30.82 3

M6 21.0 240 23 0.895 28.54 30

mean 27.9 307 28 0.884 28.28 28

US=10 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 37.8 134 57 0.908 29.73 85

M2 23.2 120 33 0.917 31.21 13

M3 37.1 160 42 0.905 29.89 46

M4 29.6 159 42 0.874 28.17 48

M5 27.2 240 49 0.918 31.8 3

M6 22.8 200 26 0.922 30.47 30

mean 29.6 168.8 41.5 0.907 30.21 37.5

US=15 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 36.1 80 53 0.929 31.56 29

M2 26.9 80 42 0.931 32.42 8

M3 38.8 120 51 0.931 32.79 13

M4 31.3 120 46 0.892 29.34 37

M5 30.8 194 58 0.922 32.03 4

M6 22.4 160 26 0.906 29.49 15

mean 31.05 125.6 46 0.919 31.2 17,6

US=20 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 32.1 53 45 0.936 32.55 152

M2 29.5 64 48 0.937 33.12 3

M3 46.2 106 61 0.926 32.6 115

M4 32.3 93 47 0.901 30.04 101

M5 30.1 153 56 0.925 32.37 4

M6 21.1 120 23 0.904 29.52 137

mean 31.8 98.16 46.7 0.922 31.7 85

US=25 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 34.07 40 49 0.952 33.6 188

M2 23.05 40 33 0.933 32.76 18

M3 43.4 80 66 0.950 34.47 46

M4 30.7 80 44 0.909 30.6 61

M5 28.9 113 53 0.928 32.8 1

M6 21.2 120 23 0.905 29.67 35

mean 30.2 78.8 44.7 0.930 32.31 58

M3 resembles M5, i.e., is essentially low-motion. In this

sense, the use of Algorithm 3.2 during the whole stream

duration is self-defeating.

Summing up, we can conclude that mapping algo-

rithms in fact may have a relevant impact on multimedia

transmission over real-time networks. However, the ex-

tent of such impact is strongly dependent on the nature

of the media being transmitted. Furthermore, in real sce-

narios the classification can be hard, since streams may

exhibit different behavior over time. One possible way

of tackling this issue is classifying online the streams and

selecting dynamically the most adequate algorithm. This

will be addressed in future work.



Table 4. Results for exp. 3
US=5 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 35.1 340 51 0.875 27.29 40

M2 23.7 400 34 0.902 29.43 9

M3 36.5 279 39 0.876 27.01 35

M4 26.2 239 34 0.852 26.77 39

M5 28.3 400 52 0.911 30.83 3

M6 20.7 240 22 0.893 28.48 25

mean 28.4 316 39 0.885 28.3 25

US=10 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 35.3 120 52 0.911 30.03 80

M2 49.5 240 77 0.927 31.72 2

M3 37.4 160 44 0.909 30.14 33

M4 31.3 156 46 0.878 28.37 42

M5 36.6 400 68 0.915 31.11 1

M6 22.9 240 27 0.901 28.85 27

mean 35.5 219 52 0.907 30.09 30

US=15 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 37.5 80 56 0.931 31.87 33

M2 41.5 120 70 0.937 32.9 2

M3 39.6 120 55 0.933 32.98 14

M4 32.4 120 48 0.893 29.42 42

M5 35.4 275 66 0.920 31.69 0

M6 30.8 240 45 0.918 29.83 20

mean 36.2 159.1 56 0.922 31.48 18

US=20 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 32.0 49 45 0.939 32.78 375

M2 34.6 81 59 0.940 33.29 2

M3 37.9 81 45 0.932 33.12 322

M4 29.2 80 41 0.893 29.74 310

M5 33.2 195 62 0.923 32.15 3

M6 35.8 240 57 0.934 30.22 2

mean 33.78 121 51 0.927 31.88 169

US=25 ĉ(kB) t̂(ms) q̂ SSIM PSNR DrF

M1 35.5 40 52 0.954 33.86 181

M2 45.5 80 74 0.947 34.17 2

M3 45.5 80 67 0.949 34.58 34

M4 30.6 80 44 0.909 30.61 54

M5 34.3 154 63 0.927 32.56 2

M6 36.3 240 58 0.923 30.25 0

mean 37.9 112 59 0.935 32.67 45

5 Conclusions

The transmission of multimedia streams with real-time

requirements demands appropriate network capabilities.

[9] presents a multidimensional dynamic QoS adaptation

mechanismwhich changes dynamically the channel band-

width and quantification factor according to streams needs

and overall system load.

The bandwidth allocated by the bandwidth distribution

algorithm has to be mapped into the network operational

parameters (C,T). This mapping is not univocal and dif-

ferent strategies have an impact on the application-level

performance. This paper presents two different mapping

algorithms. One favors the use of higher image sizes and

should perform better in static scenarios, while the other

algorithm favors higher frame-rates and should be more

Figure 2. M3 results for Exp. 1

beneficial in high-motion scenarios.

Both algorithms have been intensively tested using 6

different industrial video streams, with different motion

types. Both single mapping algorithm (i.e. all streams

handled by one of the algorithms) and hybrid mapping al-

gorithm (streams handled by themost adequate algorithm)

have been analyzed. The results obtained show PSNR

differences up to around 2dB, or 0.02 in SSIM obtained

in different streams depending on the mapping algorithm

used.

The classification of the streams proved to be difficult

to deal with, since video streams are frequently heteroge-

neous, exhibiting activity peaks mixed with stability peri-

ods. This heterogeneity somehow dilutes the observable

differences. This introduces a new dimension for the QoS

management, which is the development of a live motion

detection mechanism to select the appropriate mapping

algorithm depending on the current scene classification.

This will be addressed in future work. Moreover, we are

also working in the compilation of a new industrial video

database, which can represent better the special properties

of videos in this domain.
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