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Abstract—Nowadays the use of so-called Network Control
Systems is a common practice. Although convenient, networks
introduce several perturbations to the control system, due to
the additional latency, jitter and even errors that arise when
messages fail to be delivered. This paper presents a control
architecture that attenuates the impact of the network on the
controller performance. The proposed architecture is based on a
series of data buffering and estimation, decoupling the controller
execution from the instants in which messages are transmitted.
In the sequel, important bandwidth are also attained, due to the
batch transmission of sensor and control data.

I. INTRODUCTION

In recent years networked systems and related electronic
systems have evolved, thus becoming somewhat more suitable
for control purposes [1] [2]. However, some issues remain
open, such as the scheduling of networks traffic — periods
(which are application dependent), phases (which may be
interdependent) and other schedule related issues — and inher-
ent network errors. Consequently, messages may be delayed
by the network for large amounts of time, eventually failing
deadlines, or may even never arrive, in case of errors.

From the control standpoint it would be desirable if all such
issues could be masked and that an image of the system could
be presented without the peculiarities of the network. A vast
body of work already exists that addresses this problem, as can
be seen in, for example, [3] and references therein. The most
promising approach appears to be a control-aware network
design and a network-aware controller.

This paper proposes an architecture that, to some extent,
decouples the network data exchanges from the control action.
To achieve this goal, the controller integrates an estimator that
computes future states and actuation values. The unavoidable
imperfections of the system model and the perturbations that
always exist in real systems (e.g. noise, quantification errors)
naturally cause such estimations to differ from the real system
state. To keep the estimations quality within certain limits,
messages are sent occasionally to feed the estimator with
real process data. One important fact to retain here is that
the controller becomes loosely coupled to the reception of
messages, since its computations are based in the estimator
output. Additionally, several sensor values, as well as actuation
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values, can be grouped within the respective nodes and sent
inside a single message, which permits obtaining important
benefits in terms of bandwidth, since the data efficiency (i.e.
ratio between the useful data and the total message length) is
improved.

II. RELATED WORK

This work encompasses many aspects that can be found in
the control/network literature, namely:

∙ The ability to change the control rate at run time. One
such approach was presented in [4], which suggested the
design of several controllers, each one for a different
sampling rate, and the use of a selection mechanism
responsible to switch the controller (and corresponding
sampling rate) when certain error criteria were met (or not
met). In [5] controller rate adaptation was also discussed,
but with focus on CPU slack and other centralized
resources optimization. A different approach is presented
in [6]. There it is proposed that the rate should be
proportional to the quadratic error and to a constant given
to each process, so that more important processes still
somehow have a higher priority. A similar approach had
been proposed before (see [7] and in references therein).
These approaches cause slight oscillations. This is so
because the controller process is given a short period
when it has large errors, which gives rise to a small
error. This in turn triggers the switch to a slower rate
controller, which gives rise to a larger error. This prob-
lem does not occur in systems with properly designed
static schedulers, that uses a schedule that minimize the
expected error over a large run-time. In fact, in order to
avoid such oscillations, dynamic schedulers must change
based on a low-pass filtered version of the error, not in
the instantaneous value.

∙ The use of buffers for improving state estimation in lossy
networks. In [8], it is shown that a buffer in the sampler
can be used to improve state estimation. In the same
paper, the probability of the estimation error covariance
matrix being smaller than a given matrix is explored in
detail.
The simpler systems deal with missing actuation values
by holding their outputs in the absence of new control
messages. Systems in which the controller can somehow
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compute a new value, whenever a controller message is
not present, represent a logical evolution.
From the perspective of controller estimation, a scheme
to compensate for networks delays was presented in [9].
There it is suggested that the controller should predict
the state of the system at the control instant and then
apply a control law based in the predicted state. A similar
approach was studied in [10], but with the prediction of a
future (network delayed) state and the application of the
control law. Less sophisticated approaches include the use
of basic interpolators to achieve the same goal.

Another approach to control that relates to the approach
presented in this paper is the Send-On-Delta (SOD) [11], [12],
in which data is sent if either a significant change has occurred
or a given amount of time has passed since the last message
was sent (I am alive message). A rather evolved version of
SOD is presented in [13], that is state-space based, in which
the sampler runs a version of the estimator running in the
controller and an estimator based in all samples. A significant
change, in that context, refers to the difference between the
estimated spaces. Another publication pertaining to this article
is [14]. There it is argued that computation can be exchanged
for bandwidth, in the sense that the number of messages
exchanged in the network can be reduced if more complex
control techniques are used. An example of a system with an
estimator/controller capable of such trade-off is provided.

III. ARCHITECTURE RATIONALE

It has been shown that networks can be made somewhat
more resilient to external perturbations provided that a suitable
error correction mechanism is in place. In fact, Shannon [15]
proved that the maximum error-free transmission bandwidth is
a function of the medium bandwidth and the signal-to-noise
ratio.

The scheme presented here tries to achieve a bandwidth-
noise tradeoff. For example, in a system with no perturbations,
once model, system state at a given time instant and future in-
put signal(s) are known, the controller could possibly compute
all future states and control actions in advance. Therefore, only
one message (potentially long but of finite duration) would
need to be sent, rendering the transmission rate close to zero.

As control perturbations increase, the transmission rate
also has to increase to guarantee a small output error. It
should be stressed that what is being increased is the message
transmission rate, not the control execution rate. The former
is determined based on the conditions of the output (error)
and the availability of bandwidth in the bus, while the later is
determined by the dynamic of the system, using some empiric
values [16] [17] [18]. This low-level of coupling between the
network transactions and the controller execution is extremely
positive from the system design point of view, since turns both
subsystems quasi-independent. In fact, in this architecture,
the only requirement of the controller is that the networking
subsystem should be able to feed data to bound the estimator
error, not being relevant the particular instant in time in which
the messages are sent and received.

From a network perspective, it is a well known fact that
the number of nodes and the bandwidth requirements of each
node, have been increasing steadily in the past decades. The
network bandwidth may eventually become insufficient. One
immediate and obvious solution is increasing the bandwidth
of the network. However, such approach is, in many cases,
undesirable since has enormous implications. For instance,
Controller Area Network (CAN) [19] is still very used in
many domains (e.g. automotive, automation). CAN bandwidth
is fundamentally limited to 1Mbps (or less, depending on
the network length). Thus, moving to higher speeds requires
abandoning this protocol, which implies huge costs (training,
development tools, migrating existing systems, ...).

A less obvious, but more intelligent, approach is to improve
the efficiency of the network bandwidth usage. One method
to achieve this goal is to take advantage of the bandwidth
vs. computation trade-off. The scheme presented here has
the potential to do so efficiently, since the estimator, which
requires additional processing, permit the reduction of network
load, by allowing several sensor samples and/or actuation
values to be sent into a single message, therefore reducing
the communication overhead. This scheme can be used either
to increase the number of nodes and control loops that can be
supported in a given network or, alternatively, may be used to
increase the effective bandwidth available to a given control
loop or set of control loops.

IV. DESCRIPTION OF THE PROPOSED ARCHITECTURE

The control systems presented here have the usual dis-
tributed control structure, i.e., sampler, controller and actuator
nodes, see Fig. 1. As the name states, sampler nodes sample
a number of physical variables and send the values to the
controller. The controller receives a number of sampled vari-
ables and then computes a series of control outputs, that are
subsequently sent to the actuators. Actuators receive messages
containing a desired value for physical variables and ensure
(sometimes not completely effectively - e.g. due to output
noise) that they actually have such values. Figure 1 depicts
a control system with the proposed architecture.

A. Sampler

The sampler is a simple system, akin to the one proposed
in [8] (though there is a big semantic difference associated
with the values stored in the buffer). The sampler stores in
a circular buffer the last 𝑁 sampled values. The buffer is
obviously updated whenever there is new data. When this
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happens the entire buffer content plus a sequence number
are sent to the bus. The sequence number tells the receivers
(controllers) if any messages were lost and, if so, how many.
If less than 𝑁 consecutive messages were lost, then no
information is lost — though part of it is received late.

The presence of an estimator in the controller node allows
messages to be sent in batches. Since all communications
imply overhead, such reduction in the number of communica-
tions leads to bandwidth savings. Depending on the particular
network protocol, this strategy will produce slightly different
results. For instance, in CAN, the maximum payload is 8 bytes,
thus the length of the packing is limited. However, the data
efficiency of CAN is extremely low and thus packing even a
few bytes has a significant impact on the aggregated efficiency.
Ethernet exhibits a different behavior. The minimum payload
is 46 data bytes and thus, when the sensors produce small
amounts of data (e.g. 12 bit ADC), several samples may be
packed without requiring any excess bandwidth with respect
to sending a single value. Additionally, the packaging capacity
is very long, since an Ethernet frame can carry up to 1500 data
bytes.

B. Controller

Many application domains are very cost-sensitive, thus the
processing power tends to be as low as possible. Hence, the
controller is most likely the only node with a considerable
processing power. For this reason, whenever possible, the
heavy lifting is done by controllers.

The controllers proposed in this paper are composed of two
subunits or tasks, that are executed with a certain degree of
independence.

1) Whenever a message is not received, the estimation is
made based on the previous estimate and the previous
control signal. When a new message is received the
state from the instant that the last previous message was
received up to the present is recomputed, based on the
actually sampled values, through a process explained in
the next two paragraphs. Thus, estimates built in the
absence of samples are discarded and in the long run all
estimates are made based on actual samples. This has
two advantages: i) at any time there is the best possible
estimation (even when the best estimation is not based
on a sample) and ii) the covariance matrix is certainly
bounded and from time to times equal to the lowest
possible, i.e. the covariance matrix of the case in which
all samples were received.
The first part of the controller interacts with the sam-
plers. The controller has a sequence number of its own,
that represents the last sensor message that was success-
fully received. Whenever a new message is received, its
sequence number is compared to the sequence number of
the controller. If it is the next number in sequence then
no message has been lost. If the difference is 𝑛, 𝑛 > 1,
then the total number of lost messages is 𝑛 − 1. After
receiving a message, the controller sets its sequence
number to the last received message.

Knowing the number of lost messages, the controller
extracts this same number of past input values from the
current message (buffer), plus the current sample. This
approach allows the controller, with the information of
its previously computed control signals, to reconstruct
the state trajectory of the system (or any other equivalent
estimation mechanism) up to the present. It should
be remarked, (again), that in doing so the estimates
computed without the sampled values are disregarded.
To summarize, this task builds an estimate of the sys-
tem state and, if necessary, a system identification is
performed. This task is executed whenever there is a
new message from a sensor.

2) The other task running in the controller is responsible
for computing control values and sending them to the
respective actuators. To this end, the controller generates
a series of 𝑀 control outputs, one for each of the next
𝑀 actuating time instants. The first one is computed
directly from the previously estimated state. Subsequent
control signals are computed assuming the estimated
state given the computed control signal and the control
law.
After having this set of control signals, the controller
sends them in an a single message to the respective
actuators. Once again, sending larger messages may
have the implications that were discussed in the sampler
description.
This second task is both self-activated or activated by
the first task. It is activated by the estimator when the
estimator reaches the conclusion that the states estimated
by the controller are considerable different from those
reported by the sampler. It activates itself if it remains
inactive for a constant number of periods after its last
activation.

An SOD-like system was implemented, in which the sen-
sor and the controller have threshold values. Whenever the
sampled value is outside a given range of the last sent value
or a given amount of time has passed, a new message is
sent. Similarly, when the control signals estimated in the last
message differ significantly from the control signals computed
given the actually state trajectory, or a given amount of time
has passed.

C. Actuator

The actuator translates the latest available value into the
physical world. The actuator is synchronous, changing its
value at well defined time instants (mostly likely periodically).
When a new message is received, the next output value is set
to the first value of the array. If the time to output the next
value is reached before a new message is received, the second
value of the array is outputted. Obviously, this assumes that
messages that have not arrived until a given moment were
lost, as opposed, for example, to messages arriving out of
order. Whenever all values of the messages are outputted, the
actuator keeps outputting the last value. However, this situation
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will likely occur with a very low probability, since the array
size can be chosen in order to avoid it.

V. PERFORMANCE ASSESSMENT

To perform an experimental validation of the proposed
architecture — in this case a verification of used bandwidth
reduction — one system was simulated, in the MatlabⓇ

numerical computation environment. TrueTime [20] was used
to implement the networks (Ethernet) and kernels.

The simulated system had the following continuous-time
state-space representation:

𝑆1 : �̇� =

[−1 0
1 0

]
𝑥+

[
1
0

]
𝑢, 𝑦 = [0 1]𝑥+ 𝑣 (1)

which has (𝑠-plane) poles at −1 and 0. The system was
sampled every 10𝑚𝑠. Pole-placement was used to put a closed-
loop double pole at 0.98 (𝑧-plane). The input of the system
was perturbed with white noise, for six equidistant RMS points
in the range 0− 10.

Two groups of experiments were performed. The first group
was done without output noise and the second was simulated
with an output noise similar to those generated by a 10 bit
ADC with no other non-idealities (10 bit due to its high
availability in contemporary micro-controllers).

Each experiment was performed for six threshold values.
The threshold values of the sampler and the controller were set
proportionally, i.e. 𝑇ℎ𝑐 = 𝑘∗𝑇ℎ𝑠, where 𝑇ℎ𝑐 is the threshold
in the controller, 𝑇ℎ𝑠 is the threshold in sensor and 𝑘 is a
constant factor. A value for the gain 𝑘 that gave a good relation
between used bandwidth and the Integral Squared-Error (ISE)
was found by trial-and-error. The value used in the simulations
was 0.1. Due to the random nature of the experiments (noise),
each experiment was performed 160 times.

Figure 2 depicts the variation of the ISE as a function
of the SOD threshold value for several input noise levels
(the ISE graphs with output noise are similar to the ones
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Fig. 2. ISE versus threshold for several noise values
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Fig. 3. Threshold vs bandwidth for several noise values (top—no output
noise, bottom—with output noise, left—sensor to controller, right—controller
to actuator)

presented here). From this figure it follows that, using this
control strategy, the greatest contribution to the ISE comes
from the SOD threshold and that the input and output noise
levels have a very small effect on the ISE, which was expected
due to the SOD nature of the system.

Figures 3 shows a series of bandwidth measurements as a
function of threshold for several noise levels. In particular they
show the saved bandwidth in percentage, which is computed
as:

𝑠𝑏 = 100× 𝑏standard − 𝑏used
𝑏standard

, (2)

where 𝑏used is the bandwidth that was measured in the
simulation and 𝑏standard is the bandwidth used by a standard
controller, under similar systems and networks.

The first set of graphs (upper-left) show that the saved
bandwidth tends to 87.5% when the threshold values grow
unboundedly. This happened because at least one out of 𝑁
messages is transmitted even if the thresholds were not reached
(as described before). Thus, when the threshold is significantly
larger than the error in the signals, the saved bandwidth tends
to 100 × (𝑁 − 1)/𝑁 percent. In this case, 𝑁 = 8 (thus
converging to 87.5%). Since Ethernet was used, a message
with 8 blocks of 2 bytes each is well within the minimum
payload of 46 bytes, hence the message fits in what normally
would be padding.

On a similar experiment (down-left) done with ADC reading
error, the transmission rate was limited by the ADC noise,
i.e, its effects were enough to trigger a transmission (sooner
than the effects of the input noise alone). Hence, the saved
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bandwidth was less sensible to the input noise.
The controller actuator transmission without ADC reading

errors — top right — is similar to its sensor-actuator coun-
terpart. However, in the presence of ADC reading errors —
bottom right — there is no significant qualitative difference.
Mostly because those errors got filtered out due to the higher
rate at which the sensor send its messages

Note that not all messages sent from the sensor to controller
triggered a message from the controller to the actuator. If
the controller notes that the new messages do not change
significantly its state estimate and consequently its control
outputs, no new messages will be sent. That is the primarily
reason why the two rightmost graphs of figure 3 are rather
similar.

Other aspect worthy of remark is the convergence rate of
the curves. In particular, the curves are converging to the value
mentioned above at different rates. This is due to the fact
that under the same threshold value, systems with lower noise
transmit less messages. In the extreme case of no noise, as
depicted in the top curve of the two top graphs in figure 3,
the curve converged to a step function. When the threshold is
zero it sends all the messages. When it is not zero, due to the
estimators, it only sends 1 message out of 𝑁 .

VI. SUMMARY AND CONCLUSION

A new control architecture was presented. Similarities and
differences between it and controllers or architectures de-
scribed in the literature were discussed.

The new architecture was tested on simple system. Results
showed a clear reduction of used bandwidth, under Ethernet,
without a significant ISE increase. Future contributions may
include numerical computations of the ISE under a given
threshold, that will allow the computation of the best threshold
for a given ISE. And it may also include the optimal value of
𝑁 (described above) for a given threshold.
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