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Abstract

This paper presents an Ethernet sniffer based on dedicated
hardware, able to carry out the timestamping of network
events with a level of resolution and precision compatible
with the specific needs of real-time protocols. The sniffer
is based in FPGA technology, and autonomously stores in
local memory the received messages data and associated
information (timestamps and size). This data is then fed to
the host computer, via an USB connection, and stored in a
file format compatible with Wireshark. This allows using
standard tools to subsequently analyze the traffic. Further-
more, in the scope of this work it was also developed cus-
tom tools to automate the analysis of timing properties of
the traffic, including the generation of graphics and statis-
tical data, which are common operations in the analysis of
real-time protocols. The paper includes experimental re-
sults of a prototype implementation showing that this tool
permits meticulous temporal measurements, with a resolu-
tion of 10ns and a maximum error of 100ns, which improve
the results obtained with standard software-based applica-
tions by over one order of magnitude.

1. Introduction

Nowadays, communication networks are used in many
distributed applications that need to share information be-
tween the different nodes that compose the system. Ether-
net has emerged as the de facto standard in generic local
area networks, being used in a wide scope of applications,
ranging from complex systems as banks, where massive
amounts of data flows are supported, to the network used
at home to access internet or share a printer. A common
property shared by these “classical” Ethernet applications
is that they are inherently soft-real time. In this context the
network is required to provide high throughput and good
average response times, but occasional abnormal traffic de-
lays, due to e.g. overloads, have no catastrophic conse-
quences.

In the last years Ethernet has established itself also as
one of the most important networking technologies even
for systems with extra functional requirements on timing,
raising the so-called Real-Time Ethernet (RTE) protocols.
Switched Ethernet architectures, in particular, have been
highly regarded for this class of applications since they al-
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leviate the impact of the non-determinism inherent to Eth-
ernet’s CSMA/CD medium access control (MAC). Nowa-
days RTE protocols are found in industrial environments,
military systems, avionics, body networks in automotive
applications, etc. Many of these application classes have
strict timeliness requirements and thus, computational re-
sults must be logically correct but also be obtained during
restrict and predictable time intervals. For instance, in the
closed-loop control of the motors of mobile robots the com-
mands have to be sent at precise time intervals or the per-
formance degrades, potentially causing catastrophic con-
sequences in material terms or even jeopardizing human
lives, depending on the particular environment. Clearly, for
this kind of applications the timeliness aspects of the pro-
tocols are of paramount application, and thus the network
performance has to be analyzed also in this dimension.

The validation of the proper operation of a network
is typically done by means of the so-called traffic ana-
lyzer tools, also known as sniffers. The purpose of using
these tools is to capture messages and the time instants in
which they flow on the network. There are many applica-
tions available for this purpose, both commercial and open
source. One of the best known applications is Wireshark
[1] (formerly EtheReal). The problem of these solutions
is that they are mainly software-based, relying on standard
PC-class hardware to observe the traffic.

Despite being simple and inexpensive, in this approach
the timestamps are taken in software, typically at the ker-
nel space, suffering from a set of cumulative interference
sources that inevitably compromise the accuracy of the
measurements, resulting in temporal resolutions of the or-
der of 1µs and an uncertainty of the order of milliseconds.

Many real-time applications have cycle times of the or-
der of milliseconds, thus these tools become clearly unsuit-
able for verifying the RTE timeliness aspects. Some of
the commercial tools available for Ethernet networks are
based on specialized hardware. In this case the timestamps
are generated by customized network interface cards, ex-
hibit improvements of one order of magnitude compared
with software-only approaches. The main problem with
these approaches is that they are proprietary, closed and
extremely expensive.

The usage of programmable logic devices is a low cost
and flexible solution to produce dedicated circuits to per-
form specific tasks. The existence of intellectual property
(IP) cores allows increasing the productivity by reducing
the prototype time and the costs associated to the manufac-
turing of Application Specific Integrated Circuit (ASICs).



This observation fostered the development of a low-cost,
high-resolution, open and flexible Ethernet analyzer. The
analyzer framework is based on standard FPGA technol-
ogy and uses open file formats, facilitating the use of com-
monly available tools (e.g WireShark). A set of analysis
tools, specific to RTE protocols and not commonly avail-
able in standard analyzers, has also been developed in the
scope of this work.

The remaining of this paper is organized as follows.
Section II describes the motivation of the work and intro-
duces some related applications and studies. Section III de-
scribes architecture and some relevant details of the sniffer
internal structure. Section IV shows the results of imple-
mentation on FPGA. Section V describes the tests done and
the results obtained. Finally, section VI presents the con-
clusions and some points to be improved and considered in
the future work.

2. Related Work

Many protocol analyzer tools are available in the mar-
ket. Some of them are pure software approaches, relying
solely on the hardware of the host computers (typically
PC-based), to carry out the packet capture, timestamping
and analysis. These tools are normally extremely complete
and powerful, being able to handle most of the available
communication protocols. One of the best known appli-
cations belonging to this class is Wireshark [1] (formerly
EtheReal).

The main issue with this class of applications is that
the timestamps are generated in software, typically in ker-
nel space, after some initial processing steps. The typical
chain of events triggered upon the physical reception of an
Ethernet packet on the NIC starts with a DMA request, to
transfer the packet contents from the internal NIC mem-
ory to the main memory, followed by an interrupt request,
leading to the execution of the device-driver packet recep-
tion handler. This device handler submits the packet data
to a device-independent reception handler that examines
the packet contents and activates the appropriate protocol
handler. Timestamps are typically generated at the device-
independent reception handler, thus inheriting the jitter in-
volved in each one of the processing steps above mentioned
(DMA transfer, interrupt servicing and scheduling of the
packet handlers). The net result of all these sources of non-
determinism is that the time elapsed between the actual re-
ception of a message and its timestamping is essentially
unpredictable and highly variable, depending, among other
things, from the processor utilization, device-drivers in-
stalled, sources of interrupts, locks by the access to shared
resources and the hardware characteristics (direct memory
access, cache memory and pipelined architectures). The
accuracy with which the timestamp of the network events
is generated is gross, typically with a temporal resolution of
1µs and an uncertainty of the order of milliseconds. Since
many real-time applications have cycle times of the order
of milliseconds this class of tools, despite inexpensive and
powerful, become clearly unsuitable for use in RTE proto-
cols analysis.

Many academic and commercially available tools im-
prove the degree of accuracy provided by pure software-
based by over one order of magnitude, thus reaching a
level suitable to test the compliance of RTE protocols.
These approaches are based on specialized hardware sup-
port. In [2] a multi-probe measurement instrument for real-
time Ethernet networks is presented. It is composed by
many probes that can be placed among the network and
each one is responsible for monitoring a single full-duplex
link. A secondary or auxiliary measurement network has
been created to convey results of logging and timestamp-
ing. This measurement network is also used for distributed
clock synchronization in order to allow the comparison of
timestamps from different probes. Each probe associates
a timestamp to every frame that transit in the monitored
link and then, the original frame is encapsulated in a new
longer frame containing the timestamp and additional in-
formation. The measurement network is a Gigabit Eth-
ernet network and the captured packets are encapsulated
in jumbo frames. These frames are then sent to a moni-
tor station that de-encapsulate incoming packets retrieving
original frames and timestamps and then the information
is displayed using Wireshark. However, this tool is quite
different from our purposes as it has multi-probes and it is
intended that the tool remains permanently in the network,
providing a continuous monitorization. It also presents a
drawback that is related with monitor station. As a new
layer has been inserted between Libpcap and Wireshark,
incompatibilities can happen when new versions of Wire-
shark or Libpcap are released.

A similar project, and also based on FPGA technology,
can be seen in [3]. The system can sniff packets from a
10/100mbps Ethernet interface and display relevant infor-
mation about captured packets on a VGA monitor. It is
connected to the network using a hub, so it is impossible to
capture traffic in full-duplex connections and, because of
that, it does not fulfil all the requirements to analyse some
RTE protocols. Another disadvantage is the number of pro-
tocols supported by the E-Sniff. The dissector software is
implemented as a series of lookup tables that translate Eth-
ernet types, protocol numbers or ports into function point-
ers and it does not seems easy to add new protocol dissec-
tors. Finally, if we consider packet logging, the captured
data is stored into non-volatile flash memory for later re-
view and can hold approximately 3.95 MB. Considering
a high transmission rate, the memory can became full in
less than one second, which is insufficient in many situa-
tions. A capture can easily reach some gigabytes or even
terabytes. Apart from that, the writing of 65kB of data onto
the memory takes about half a second and during this time
numerous packets may be dropped.

Other tools for Ethernet networks have capabilities to
generate traffic and, comparing it with captured traffic can
measure latency or frame losses [4]. AE5501 [5] is com-
mercialized by Yokogawa, costs about 3000eand it has
a resolution of 1µs (with a maximum error of 3µs) for
10Mbps connections and a resolution of 100ns (with a max-
imum error of 300ns) for 100Mbps and 1Gbps connections.
These tools are usually remotely controlled for configura-



tion and for a later analysis of the results and it is possible
to connect various equipments among the network. Ad-
vanced tools can have higher processing and storage ca-
pacities (15T Bytes), with prices that can go up to 40000e.
Besides being extremely costly, these tools are also closed
and inflexible. They are based on custom hardware and
use proprietary file formats. Thus, using standard tools or
developing a new one for analyzing the traffic network is
hardly accomplishable and, when possible, inefficient due
to the poor integration.

The above discussion permits concluding that the proto-
col analyzers available are either unsuitable due to gross
temporal accuracy, or expensive, closed and inflexible.
Thus, there is room for the development of a low-cost,
high-resolution, open, flexible and extensible Ethernet an-
alyzer, which is the objective of this work.

3. Protocol Analyzer Architecture

The protocol analyzer acquisition unit was designed
with the intention of making accurate time measurements
and minimize as much as possible the perturbation in the
network. The corresponding block diagram is represented
in figure 1. The acquisition unit is inserted in the link under
analysis using an Ethernet Test Access Point (TAP) that du-
plicates the data flows. There are many commercial TAPs
[6], many of them with the capability of regenerate the sig-
nals. However, in our case, due to the objective of building
a low cost tool, it was used a home-built passive TAP, us-
ing only a resistor-based adaptation circuit. Besides being
considerably cheaper, this approach does not introduce ad-
ditional latencies, contrarily to the regenerative TAPs. On
the other hand the passive TAP introduces a perturbation
at the physical level that in practical terms will reduce the
maximum length of the link.

The interface between the programmable logic device
responsible for processing the captured data and the trans-
mission medium is done via 2 Ethernet PHYs, i.e. the Eth-
ernet physical layer implementation chips, one for each
traffic direction, allowing capturing simultaneously the
traffic that flows in both directions of a full-duplex con-
nection. The FPGA receives data from PHYs, registers the
instant in which each message is received (timestamping)
and then forwards them with all associated information to
a personal computer, via an USB connection. The captured
data is stored in the personal computer and can be analyzed
later. Finally, the board also includes two push-buttons that
allow starting and finishing the capture.

Internal Structure

The FPGA implements two distinct tasks, one related
with reception and processing of the data captured from
Ethernet network and the second one associated with the
need to feed the data to the host computer. The tool is
required to permit the analysis of full-duplex connections,
thus two independent MAC IP cores have been used, al-
lowing the reception of two independent messages concur-
rently. Once received, the raw packet contents is associ-
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Figure 1. Architecture of the sniffer acquisition unit.

ated with a control header that conveys additional control
information associated with the packet, namely the instant
in which the message has been received, its length and the
number of message bytes stored. The format used to store
the file internally in the FPGA is the same used on the host
computer side, in order to minimize the processing time.

The memory used for message buffering has been di-
vided in two independent FIFO (First In, First Out) memo-
ries. The Data FIFO is responsible for storing the raw con-
tent of each message, while the Control FIFO is respon-
sible for storing the associated control information. This
memory isolation facilitates the concurrent access to both
memories. Finally, the messages are sent to the host com-
puter via an USB connection. Since the protocol conver-
sions are already done the process resumes itself to get one
entry from the Control FIFO, compose it with the corre-
sponding entry of the Data FIFO and send the whole info
via the USB channel.

The medium access control layer is based in the Tri-
Mode Ethernet Media Access Controller (TEMAC) [7]. It
is a parameterizable core built by Xilinx and basically pro-
vides to the user three types of signals: clock, data and
validation or control. Data is released in a 8 bit bus width
and can have a latency variation of three clock cycles. Con-
sidering Fast Ethernet it corresponds to a maximum delay
variation or jitter of 120ns.
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Figure 2. Internal structure of the sniffer hardware.

When the reception of a message starts (first eight bytes)
and the corresponding data valid signal is detected, the
message is timestamped and this value is stored in the
control memory. Simultaneously, data starts being stored



into data memory. When the reception ends, the message
length and the number of bytes captured are stored in con-
trol memory and thus the message becomes ready to be up-
loaded via the USB connection. This process is illustrated
in figure 2.

It is possible to bound the maximum number of data
bytes stored for each message. This option is useful since
in many cases only the initial few bytes of the packets are
relevant and thus it is possible to minimize the buffer sizes,
upload time and log file size. Besides speeding up the op-
eration, in heavily loaded scenarios this feature turns out to
be particularly relevant since the throughput of the USB
link is lower than the aggregated bandwidth of the full-
duplex Ethernet link, and thus recording all the data leads
inevitably to memory overflows. However, if the amount
of stored data is reduced to appropriate levels, compatible
with the USB channel bandwidth, memory overflows can
be prevented. In many cases the relevant data is the mes-
sage reception instant and a few control bytes stored at the
head of the Ethernet packets, and thus stripping of the data
packets has no relevant impact on the tool performance and
accuracy of the information provided.

Interface with the Host PC

The interface between the host PC and the FPGA
is based on a EZ-USB FX2 USB module from Cypress
(CY7C68013-100AC), which supports USB 2.0 connec-
tions in high-speed mode (480Mbps). It incorporates an
8051 microcontroller, although only for configuration and
management purposes, having no interference in the actual
transmission. From the FPGA point of view the device
is seen as a FIFO memory which the firmware accesses
for configuration and management. The device has been
configured to use bulk mode transmission, providing high
bandwidth and error correction.

On the host computer side, the software has been de-
veloped for the Linux operating system. The connection is
established and controlled using the functions available in
the libusb library. The data captured by the FPGA is stored
in a format compatible with the libpcap file format [8] used
by Wireshark. Since the data is transmitted via USB in the
same format as it is stored in the FPGA memory, the pro-
cessing required on the PC side consists only in writing the
received data into a file. Then, the captured data file can be
opened using standard tools, in particular Wireshark (figure
3) and taking advantage of its exporting function, new files
can be created in CSV (Coma Separated Values) or other
arbitrary text format. These files can be opened with data
processing applications (e.g. Matlab, Octave or Scilab).
In the scope of this work a few Octave scripts have been
developed to automate the extraction of commonly needed
statistical data and graphs. Some examples can be seen in
tables 1 and 2 or in figures 5, 6 and 7.

4. Modeling and Synthesis

The sniffer hardware components were modeled using
the VHDL hardware description language. The model

was synthesized and implemented in a Xilinx XC3S1500
Spartan-3 low cost FPGA [9]. The synthesis final report is
shown on figure 4.

Final Synthesis Report
=================================================
Selected Device :xc3s1500-4fg676
Device utilization summary:
Nr. of Slices: 2789 out of 13312 (20%)
Nr. of Slice Flip-Flops: 3587 out of 26624 (13%)
Nr. of 4 input LUTs: 4174 out of 26624 (15%)
Nr. of Bonded IOBs: 54 out of 487 (11%)
Nr. of Global CLKs: 7 out of 8 (87%)
Nr. of Block RAMs: 32 out of 32 (100%)
Timing Summary:
Speed Grade: -4
Min. period: 17.521ns (Max. Frequency: 57.075MHz)
Min. input arrival time before clock: 9.337ns
Max. output required time after clock: 9.922ns
Maximum combinational path delay: 12.338ns

Figure 4. Sniffer hardware synthesis report.

The implementation can operate up to 57Mhz and occu-
pies 2789 FPGA logic cells, corresponding approximately
to 20% of the available slices. Please note that a 100
Mbit/sec Ethernet network requires the MAC circuits op-
erating at 25 MHz. To implement the sniffer in ASIC tech-
nology about 2,120,985 logic gates are needed. It should
also be noted that all available block RAMs (576 Kbits) are
in use for implementing the Control and Data FIFOs.

5. Test and Performance Analysis

In order to evaluate the performance of the developed
tool, a set of tests have been carried out. The tests intended
mainly to examine the temporal precision of the tool, the
interference of the tool in the network and the capacity of
the USB connection. In this context, a comparison was
done between the results obtained using a software-only
based sniffer application (Wireshark) and sniffer using the
hardware built.

Interference in the Network

To analyze the interference of the tool in the network,
two computers were connected. One was responsible for
generating traffic, using the packETH traffic generator, and
the other PC captured the traffic using Wireshark. For each
test 500000 packets, with different periods and message
lengths, were generated. The test has been carried out
both with a direct connection between the PCs and with
the TAP/FPGA tool. In the second scenario the traffic was
captured both with the FPGA and by Wireshark, simulta-
neously.

The obtained results show that in the software based tool
some packets are dropped without the user being alerted
about it. On the other hand, the number of packets captured
by the hardware tool is exactly coincident with the num-
ber of packets generated at the source node. Apart from
that, it is also possible to observe that the percentage of
dropped packets remains the same and it is independent of
the presence of the hardware based tool. For this reason it
is possible to infer that attenuation caused by TAP has no



Figure 3. Appearance of a capture analyzed with Wireshark.

relevant impact in logical behavior of connections used in
laboratory. The connections used have about one dozen of
meters, however, the usage of longer links or worse quality
cables can in some situations be problematic.

A closer look also allows to observe that packet losses
using software applications increases with the increase of
the length of messages and with the decrease of the time be-
tween messages, thus showing a dependency with the link
bandwidth.

Capacity of the USB Connection

Another parameter that is important to evaluate is the
capacity of USB connection. Theoretically, the USB pro-
tocol has enough bandwidth to support the Fast Ethernet
data, even for full-duplex scenarios. Nevertheless, in prac-
tice some problems were experienced. The problems have
been track down to the writing of the received data into the
hard disk of the host PC. This operation is slow and inhibits
the reception of data sent by FPGA. Due to this blocking
time, the FPGA memory can become full, thus breaking
the capture process. To ensure that this is the cause of the
problem, a situation in which the data was not stored but
only analyzed to detect any incoherency, was tested. In this
case the capture was never interrupted.

Temporal Performance

To evaluate the temporal performance of the developed
tool it is important to know the exact moment in which each
packet is captured. For this reason, a FPGA was used to
generate traffic. It is important to note that, according to
the TEMAC specifications, it can have a latency variation
up to 120ns (due to the synchronization of distinct clock
domains). However, this value is much lower than the as-
sociated jitter of any personal computer. Once again Wire-
shark and the developed tool were used to capture packets
and many essays were done using different period values
and messages of different lengths. Then, the captured data
was processed using Octave based scripts and some tables
and graphs were generated.

Tables 1 and 2 present the results of a software and hard-
ware based capture, respectively. The results of three es-
says were represented graphically, with the x-axis repre-
senting the interval of time between two consecutive mes-
sages and the y-axis representing the number of occur-
rences of each interval. The FPGA-based tool produced
similar results in all situations. On the other hand, the
usage of software-only tools originated two distinct situ-
ations according to the time interval between two consec-
utive messages. When the inter-arrival time between two
consecutive packets falls below 200µs messages start to
be dropped. Furthermore, many messages accumulated in
the NIC (Network Interface Card) internal memory, being
transferred and processed by the device-driver in block, to-
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Figure 5. Results of hardware versus software times-
tamping.
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Figure 6. Impact of the length of messages in the
performance of the capture tools.

gether. In this case, the difference between timestamps of
messages is related with the processing time of each mes-
sage and not with the receiving instant, as desired. In spite
of being expected that the average time would be the same
as the period of messages, in some situations messages are
drooped and this value is obviously higher. This situation
is represented in figures 5(a) and 5(b). To compare the re-
sults obtained with the results expected, in figures 5(c) and
5(d) the same situation is shown but using the FPGA-based
tool.

Another situation, with a period higher than 200µs, in
which the software based tools performs better is repre-
sented in figure 6. It should be remarked that the length of
messages has impact in the performance of software tools,
with the jitter value increasing when the frame size in-
creases. In figure 6, messages with same period but differ-
ent lengths were captured. Nevertheless, the performance
of hardware based tools is still much better.

Period Length Max Min Avg Std Absolute
(µs) (Bytes) (µs) (µs) (µs) (µs) Jitter (µs)
10 46 48872 2 15.39 335.62 48870
10 80 67542 2 13.78 373.52 67540
20 46 24786 2 21.76 158.31 24784
20 200 54927 2 22.78 276.42 54925
50 46 39159 2 50.90 188.11 39157
50 200 45161 2 56.32 283.38 45159
50 550 25654 2 56.43 249.81 25652
100 46 71817 2 101.46 334.54 71815
100 550 40805 2 105.51 280.21 40803
100 1150 117525 3 112.11 767.69 117522
200 46 280 121 200.03 2.37 159
200 1500 57007 80 202.78 291.44 56927
500 46 589 415 500.04 2.98 174
500 1500 53502 362 501.10 237.11 53140
1000 46 2969 6 1000.06 15.12 2963
1000 1500 50003 722 1001.82 272.29 49281

Table 1. Performance of the software-based tools.

Period Length Max Min Avg Std Absolute
(µs) (Bytes) (µs) (µs) (µs) (µs) Jitter (µs)
10 46 10.09 9.99 10.02 0.035 0.10
10 80 10.09 9.99 10.02 0.035 0.10
20 46 20.09 20.00 20.02 0.034 0.09
20 200 20.09 19.99 20.02 0.034 0.10
50 46 50.09 50.00 50.02 0.034 0.09
50 200 50.09 50.00 50.02 0.034 0.09
50 550 50.09 50.00 50.02 0.034 0.09
100 46 100.09 100.00 100.02 0.033 0.09
100 550 100.09 100.00 100.02 0.033 0.09
100 1150 100.09 100.00 100.02 0.033 0.09
200 46 200.09 200.00 200.02 0.031 0.09
200 1500 200.09 200.00 200.02 0.031 0.09
500 46 500.09 500.00 500.02 0.022 0.09
500 1500 500.09 500.00 500.02 0.022 0.09
1000 46 1000.02 999.93 1000.01 0.022 0.09
1000 1500 1000.02 999.93 1000.01 0.022 0.09

Table 2. Performance of the developed sniffer.

Finally, the FPGA-based sniffer was also successfully
tested in a specific situation involving a real-time commu-
nication protocol, incidentally the FTT-SE protocol [10]
developed at the IEETA/LSE laboratory, where this work
was hosted.

Periodic messages were captured and analyzed (figure
7) and it was possible to observe that jitter value obtained
by using software-based tools can be up to 20 times the
value obtained by using dedicated hardware. It is also pos-
sible to observe that software based tools have a maximum
resolution of 1µs. More than that, it is important to refer
that the developed tool can capture messages in full-duplex
connections, being able to correlate the master and slave
messages, something than is out of reach of the software-
based tools, which can only analyze half-duplex connec-
tions.

The results obtained (resolution of 10ns with a maxi-
mum error of 100ns) are very similar to the specification of
some comercial tools. In the same conditions, AE5501 can
achieve a latency resolution of 100ns with a maximum er-
ror of 300ns. Thus, most of the times these equipments are
characterized in a pessimistic way and results correspond
to the worst case situation.
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Figure 7. Jitter of periodic messages using FTT-SE
protocol.

6. Conclusion and Future Work

This paper has presented an hardware-assisted Ethernet
protocol analyzer tool, with capacity to analyze real-time
ethernet networks. It has been implemented using FPGA
technology and the interface with the network is done us-
ing a passive Ethernet TAP. The FPGA itself has capacity
to capture traffic in full-duplex connections. Timestamping
and control information is associated to captured packets at
the hardware level, thus permitting an high degree of res-
olution and accuracy. The captured data is afterwards sent
to an host PC for further analysis, via an USB link. Data
is saved in a open file format, that can be read by standard
applications. This approach permits taking full advantage
of all the functionalities supported by applications such as
Wireshark. Some mechanisms to export data into other for-
mats were also created. Captured traffic can also be ana-
lyzed using calculation tools such as Matlab/Octave/Scilab
or spreadsheets. A set of tools for automating the extrac-
tion of common statistical data and graphs have also been
developed.

Concerning the accuracy of the tool, it is possible to in-
fer that the timestamps have a precision of 100ns and a res-
olution of 10ns, independent of the traffic load, a value
similar to the ones specified by commercially available
hardware-based tools, which have costs orders of magni-
tude higher. On the contrary, software-based tools had a
performance extremely dependent of the traffic load, with
precisions that can be worse by several orders of magni-
tude, turning out these tools completely useless for carry-
ing out measurements related with real-time Ethernet pro-
tocols.

Despite the positive results achieved, there are some
points that can be improved and will be addressed in the
future. The issue that can be pointed out to the current
implementation is related with USB transmission that can
limit the amount of captured data and the duration of cap-
ture. One possibility to alleviate the blocking time imposed

by the host computer during the storage of the received
data is increasing the memory capacity. It can be done us-
ing a FPGA with more block RAMs available, such as the
Virtex-4 (XC4VFX140) that has about 20 times more ca-
pacity. Alternatively, an external memory can be used, e.g.
the usage of a 64Mbytes DDR memory allows an increase
of the capacity up to 512x. Nevertheless these solutions
are only valid if the average Ethernet transmission rate is
lower than the USB transmission rate. Otherwise the USB
connection has to be replaced. Some alternatives that can
be considered are Gigabit Ethernet (1000Mbps), FireWire
(800Mbps) or a SATA connection (Serial Advanced Tech-
nology Attachment) (2400Mbps), being the later a poten-
tial solution for connecting to a host PC a Gigabit Ethernet
sniffer with full-duplex traffic capture capabilities.

Another point that can be improved is the user interface,
which should be more friendly. In this context it would
be interesting the development of a plug-in to Wireshark to
support and control all the functionalities of the developed
tool. Namely it would be interesting to permit controlling
the beginning of a capture, show the number of packets
captured, the duration and then terminate the capture. It
should also have a field to configure the maximum num-
ber of bytes captured from each message, avoiding having
to synthesize the tool when this value is changed. In ad-
dition it would also be interesting to add new dissectors to
Wireshark for supporting RTE protocols, in particular the
FTT-SE protocol. It would also be desirable to have the
possibility of generating graphs and tables inside the Wire-
shark, without having to explicitly export the data to other
tools such as Octave.

Due to the constant evolution of the real-time protocols
and the hardware capacities it should be considered the pos-
sibility of the future improvement of the timestamping pre-
cision. Currently, the main limitation is imposed by the
latency variation or jitter introduced by the Ethernet MAC
core used. A possible solution consists in the implemen-
tation of a timestamping unit working in parallel with the
TEMAC. In this solution two parallel paths will process
the received Ethernet frame: one will be responsible for
data reception and validation and the other for timestamp-
ing based on the signals directly provided by the Ethernet
PHY. Consequently, the timestamping will be performed
closer to the physical layer, before the frame passes through
the TEMAC, decreasing the delay between the actual frame
reception at the network interface and its timestamping.
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