
FPGA-based Implementation of an Ethernet Switch for Real-Time Applications∗

Rui Santos, Ricardo Marau, Arnaldo Oliveira, Paulo Pedreiras, Luis Almeida
DETI/IEETA, Universidade de Aveiro, Portugal

{rsantos, marau, arnaldo.oliveira, pbrp, lda}@ua.pt

Abstract

The use of switched Ethernet for precise and safe real-
time communication still suffers from undesired phenom-
ena, such as blocking caused by long non-preemptive
frames, lack of protection against errors in the time do-
main, couplings across virtual LANs and priority levels via
internal switch shared resources. Recently, a few solutions
were proposed to cope with such phenomena. One such so-
lution is based on an enhanced switch following the Flexi-
ble Time-Triggered paradigm, which enforces strict service
differentiation, blocking-free forwarding and timing errors
confinement. In this paper we propose a new architecture
following an hardware-software co-design approach that
facilitates the development of the enhanced switch features
by separating the traffic scheduling from the common man-
agement activities associated to switching.

1. Introduction

Nowadays, Ethernet and particularly using switches,
presents attractive advantages to provide safe, predictable
and deterministic communications. It has a large band-
width, cheap network controllers, high availability, easy in-
tegration with Internet and positive future prospectives.

However, Ethernet switches are not typically designed
to support the requirements of hard real-time networks.
Certain undesired phenomena hinder this use in applica-
tions that require precise and safe real-time communica-
tions, such as the control of high speed servos, target track-
ing in military systems or even control of electrical protec-
tions in substations. Such phenomena range from block-
ing caused by long non-preemptive frames, lack of protec-
tion against errors in time domain, couplings across virtual
LANs and even priority levels via internal switch shared
resources.

Supporting real-time communication with switched Eth-
ernet has been a topic of intense research for several years.
Several techniques were proposed to overcome its limita-
tions which can be divided in two groups, namely the so-
lutions based on COTS Ethernet switches and the solutions
that use modified switches. The first group includes many
different techniques, but most of them requiring software
modifications in the end nodes, for instance: the shaping of
the traffic submitted to the switch [8] and limiting that traf-

∗Work partially supported by the FCT project PTDC/EEA-
ACR/73307/2006 (HaRTES - Hard Real-Time Ethernet Switching)

fic by application design [3] [7]; and master-slave protocols
[10] [6] [2] that provide more efficient scheduling policies,
QoS management and admission control features. The sec-
ond group includes solutions [13] [12] [15] that allow to ob-
tain gains in terms of performance, timeliness guarantees,
combined with low level of intrusion because it is possible
to use network nodes with standard hardware and software
stacks, possibly with specific layers just for accessing the
real-time services.

This paper presents a solution belonging to the sec-
ond group. Particularly, the paper describes the FPGA-
based architecture of a modified switch that provides real-
time communication services, based on the Flexible Time-
Triggered paradigm. The current architecture is an evolu-
tion of a preliminary prototype [9] [13] that facilitates the
development of the enhanced switch features by separating
the traffic scheduling from the common management activ-
ities associated to switching.

2. Related work and Contribution

The fast evolution of programmable logic devices, in
particular FPGAs, allows building customizable devices
with specific properties for different application domains.
They present a set of interesting advantages, such as, very
large logic capacity, flexibility of use and low NRE (Non-
recurring engineering) costs. Moreover, they exhibit a fast
design cycle, easily upgradable and fast prototyping due
to high level modeling languages and synthesis tools. The
integration of standard IP cores with custom functional
blocks further increases those advantages.

On the other hand, the development of protocols and
ethernet devices that supporting real-time communication
can take advantage of FPGA technology. Industrial and
embedded device vendors are increasingly interested in
providing ethernet devices that support real-time services.
According to [1], there is a demand for the integration of
Modbus/TCP, Profinet IO and Ethernet/IP into a single de-
vice. The FPGAs are probably the best solution, given the
possibility to integrate soft-core processors and IP cores.

In the case of the real-time protocols, one possible so-
lution is to enhance switches with tighter timing control
and traffic classification capabilities. There are currently
two protocols that use modified switches, TTEthernet and
Profinet IRT. TTEthernet (Time Triggered Ethernet) [15]
[14] [11] is a new scalable real-time Ethernet platform that
was created by the Real-Time System Group in Vienna
University of Technology. It provides safe and real-time



Ethernet communication among applications. The com-
munication can be performed using three different traf-
fic classes, Time-Triggered (TT), Rate-Constrained (RC)
and Best-Effort (BE) messages. The messages of the first
group are in the top priority, not suffering interference of
other types of traffic and they are transmitted in prede-
fined instants. The RC messages are used for applications
with less stringent determinism and real-time requirements
than time-triggered applications. They guarantee that band-
width is predefined for each application and the delays as
well as temporal deviations have defined limits. The BE
messages have no time guarantees because their transmis-
sion is performed in the remaining bandwidth after the
transmission of the TT and RC messages. This protocol
uses a modified switch that includes a dedicated TTEther-
net controller and a high performance switching module.
According to [15] this switch is based on an Altera Stratix
II GX FPGA board.

The other protocol is Profinet IRT [12] [5] [4]. It was
developed by the Profibus International Consortium and is
also based on switched Ethernet technology. This proto-
col is implemented with a modified switch that offers de-
terminism in the transmission through explicit bandwidth
reservation for the real-time data. The scheduling param-
eters are configured during the setup phase and they are
obtained through the previous execution of a scheduling al-
gorithm. On the other hand, this switch also allows the in-
tegration of Ethernet standard devices whose traffic is con-
fined to dedicated time windows.

Despite the advantages presented by the above two pro-
tocols, they exhibit some limitations, e.g., they require a
static pre-defined configuration of the time-triggered traf-
fic and of the slot structure of an underlying TDMA round.
Therefore, we propose an alternative based on the Flexi-
ble Time-Triggered (FTT) paradigm that is fully reconfig-
urable online. We propose an FTT-enabled switch provid-
ing support for arbitrary traffic scheduling policies, as well
as online admission control, policing mechanism and dy-
namic quality of service management.

3. FTT-Enabled Switch

3.1. Rationale

The FTT-enabled switch is based on the Flexible Time-
Triggered paradigm, being the FTT master included in
switch (Figure 1). Therefore, it uses the master/multi-slave
transmission control technique, according to which a mas-
ter addresses several slaves with a single poll, considerably
alleviating the protocol overhead with regard to the con-
ventional master-slave techniques. The master uses trans-
mission control to provide improved timeliness and enforce
system integrity, for example, it completely avoids mem-
ory overflows inside the switch. This is achieved organiz-
ing the communication in fixed duration slots called Ele-
mentary Cycles (ECs), with one master message broadcast
per cycle called Trigger Message (TM), which contains the
periodic schedule for that EC. The periodic messages are

Figure 1. FTT-Enabled Switch.

Figure 2. Traffic scheduling in FTT-Enabled Switch.

referred to as synchronous since their transmission is syn-
chronized with the periodic traffic scheduler. This switch
also supports aperiodic traffic, called asynchronous, which
is managed in the background, in the time left within the
EC, after the periodic traffic (Figure 2).

This solution with the FTT master inside of the switch
enables preserving all FTT attributes, but at the same time,
it permits obtaining important gains in the following key
aspects:

• A noticeable reduction in the switching latency jitter
found in common in Ethernet switches;

• An important performance boost of the asynchronous
traffic, which in this case is autonomously triggered by
the nodes instead of being polled by the master node;

• An increase in the system integrity since unauthorized
transmissions can be readily blocked at the switch in-
put ports, thus not interfering with the rest of the sys-
tem.

• Seamless integration of standard non FTT compliant
nodes without jeopardizing the real-time services.

3.2. Architecture

Figure 3 shows the functional architecture of the FTT-
enabled Ethernet switch. The FTT master functionality, is



Figure 3. FTT-enabled switch functional architecture.

represented by the shaded area. It includes admission con-
trol, Quality of Service (QoS) manager and scheduler func-
tionality. Moreover, it implements a System Requirements
Data Base that is a central repository for all information
related to the traffic management.

On the right side are the input blocks. Here, the
ingress traffic is classified and placed in appropriate mem-
ory blocks. Furthermore, real-time traffic is verified in the
time domain. Unscheduled periodic traffic or sporadic traf-
fic that violates the minimum inter-arrival time period are
trashed. Non real-time traffic is accepted only if the corre-
sponding memory buffer has enough free space.

The global memory pool keeping the messages of each
class in independent subdivisions allows avoiding memory
exhaustion for the real-time messages, a situation that stan-
dard switches do not guarantee. On the other hand, the
real-time traffic is subject to an explicit registration. During
the registration process the procedures use the flow proper-
ties to compute and pre-allocate the amount of memory that
guarantees enough resources for all admitted messages.

On the bottom left side are the output blocks. Each
port as three pointer queues, one for each traffic class. At
the beginning of each Elementary Cycle (EC) the Trig-
ger Message (TM) is generated, afterwards the port dis-
patcher transmits the submitted packets from each queue,
according to the EC schedule provided by the FTT master.
This procedure enables to enforce the temporal isolation
between the different traffic classes.

This switch is transparent to the nodes that not produce
real-time messages. They can use any standard Ethernet
driver. The transmission of this class, inside the switch,
is according to the normal procedures of standard Ethernet
switches, based on the MAC address. The only limitation
arises the confinement of this traffic to the NRT phase in the
EC. However, the nodes that produce real-time messages

require the FTT network driver to be updated to include
different queues for the three traffic classes, react to the
Trigger Message and avoid blocking of the synchronous
traffic in the uplinks.

4. FTT-enabled Switch Implementation

The hardware architecture of the FTT-enabled switch
using FPGA technology is shown in Figure 4.

The FTT master, represented by the Master Unit, exe-
cutes a complex set of operations, namely the admission
control, QoS manager and scheduler. It also implements
a System Requirements Database to store the information
related to the traffic management. Given the algorithmic
complexity these functionalities they are implemented in
software.

On the other hand, there are several functionalities in the
FTT-enabled switch that need predictability, determinism
and speed in their execution thus being preferable to exe-
cute them in hardware. This group includes the reception
process, switching and transmission process. This way, all
blocks except the Master Unit are implemented in hardware
(figure 4). We will call this set of blocks the Switching
Module.

The integration of these two parts, Master Unit and
Switching Module, can be performed in different ways, for
instance:

• The Master Unit runs in an independent CPU and the
communication with the FPGA is carried out by a con-
ventional communication means available in the de-
velopment board (e.g Ethernet, USB, PCI, ...);

• Utilization of an FPGA embedded processor to runs
the Master Unit, either synthetizable or hardwired (e.g
MicroBlaze, PowerPC).



Figure 4. FTT-enabled switch - hardware implementation (top level).

4.1. Hardware Implementation - Top Level

The implementation of the Switching Module is based
on FPGA technology, because it allows an easy and flexible
integration of practically all components. The only devices
implemented outside the FPGA are the Ethernet PHYs due
to their electrical characteristics, timing requirements and
wide availability of pre-built modules.

Each port has one associated Ethernet Phy directly
linked to one Xilinx Tri-Mode Ethernet MAC soft core
fully compliant with IEEE 802.3 standard, which can op-
erate at 10/100/1000 Mbits/sec. This MAC core can be
implemented on the programable logic resources of Xilinx
FPGAs and it is highly configurable and provides the fol-
lowing interfaces:

• Reception Control and data ports;

• Transmission Control and data ports;

• Core management with control, status, address and
data ports;

• Ethernet PHY Media Independent Interface.

The MAC Interface Unit, specific for each switch port,
implements all logic that allows to configure the MAC IP
Core. In the reception, it receives, classifies, validates and
handles the data, writing it write in memory. In the trans-
mission, this unit reads the data from the memory, handles

it and manages the interface with the MAC IP Core for the
transmission.

Another top level unit is the Memory Pool that im-
plements a dual port static Synchronous Random Access
Memory - SRAM with separate clocks, control, address
and data buses. One port (write only) is shared among
all input ports and the other (read only) used by all out-
put ports. The memory is segmented in blocks that allow
to store packets with maximum size, and each block can
store one packet, only. This mechanism is inefficient with
short packets but simpler to manage and enough to prove
the concept.

The Control and Switching Logic Unit plays a central
role within the switch, performing the reception, switching
and transmission management based on the control and sta-
tus signals provided by MAC Interface Unit. Moreover, it
synchronizes all the switch functioning and protocol oper-
ations.

The Rx Multiplexing Unit is shared among all switch
ports. It is basically a multiplexer (or TDMA wheel) that
allows all ports uplinks to write the received messages data
into the switch main memory. Contrarily, the TX Demul-
tiplexing Unit is also shared among all switch ports and it
is basically a demultiplexer (or TDMA wheel) that allows
all ports to read data from the Memory Pool and write it on
the corresponding downlink MAC.

The Master Interface Unit implements the interface with
the Master Unit, which executes on a suitable hardware
platform.



Figure 5. FTT-enabled switch - complete view.

4.2. Hardware Implementation - Full View

Figure 5 represents the complete view of the FTT-
enabled switch. This subsection focuses, in particular, on
the problem of synchronization inside the switch and the
structure of two main units, the MAC Interface Unit and
the Switching and Control Logic Unit.

The MAC IP Core provides the clocks that enable the
reception and the transmission of data. On the other hand,
one independent main clock manages the switch core, com-
posed by three main blocks (Memory Pool, Switching and
Control Logic and Master Interface). The union of these
different clock domains was possible using FIFOs (in-
cluded inside the MAC Interface Unit) with independent
clocks for the write and read sides. This way, for each
port, the information received from the MAC IP Core is
written in the corresponding FIFO with the reception clock
provided by the same MAC. The reading of the informa-
tion from the FIFO is performed with the main clock. The
transmission of the data is processed in a similar way. The
data ready for transmission in a specific port is written in
the transmission FIFO with the main clock and read by the
MAC with its transmission clock.

In the MAC Interface Unit, the Reception Unit imple-
ments the reception interface of Ethernet frames coming
from the MAC IP Core. The received data are inserted
in the FIFO that separates the clock domains. The next
unit in the chain of reception is the Classifier and Validate
Unit that performs the classification and the validation of
the received packets. For instance, the non-FTT packets
are directly delivered to the Reception Buffer Unit. The

FTT control packets, that comprise commands to the Mas-
ter Unit, are delivered to the Master Interface. Finally, the
remaining packets still pass through a validation process.
If these packets are consistent with the EC-Schedule pro-
vided in the Trigger Message by the Master Unit, they are
delivered to the Reception Buffer Unit, otherwise, they are
trashed. Thus, the integrity of the switch and network is
guaranteed. The Reception Buffer Unit accumulates the
incoming bytes to form a word N-bytes wide, where N is
the number of ports. This way, the writing in the Memory
Unit is carried out, per port, with N bytes at a time and at
a rate N times slower than the arrival rate of the respective
byte stream. After multiplexing all N ports, the wriring fre-
quency at the Memory Unit is equal to the bytes arrival rate
at the individual ports, avoiding the need for higher fre-
quency clocks. This technique is also used in the transmis-
sion chain by the Transmission Buffer Unit, which receives
words N bytes wide from the Memory Unit and forwards
the data to the respective FIFO one byte at a time. The read-
ing frequency from the Memory Unit is again equal to the
byte transmission rate in the port FIFO. The Transmission
Unit reads the data from the FIFO, which allows the sep-
aration of clock domains, and manages the sending of this
data to the MAC IP Core. Finally, in a different chain, the
Configuration Unit implements the logic used to configure
the MAC IP Core at startup.

The Switching and Control Logic is a complex unit,
where the Reception Control Unit manages the forwarding
of the received packets to the output ports. This unit re-
ceives, for each Elementary Cycle, the corresponding Trig-
ger Message, which includes the identification of all data



packets that will be received from each input port and sent
by each output port (EC-Schedule).

Thus, the FTT data packets are forwarded based on the
contents of the Trigger Message, only. On the other hand,
the non-FTT data packets are forwarded based on the For-
warding Table that is updated dynamically as in common
switches. The actual forwarding is carried out by deliv-
ering the pointers of the respective packets to the Packet
List Unit attached to the corresponding output port, and in-
serting them in the correct queue. This unit contains three
queues, one for each traffic class (Sync RT, Async RT, and
NRT), which contain the pointers to the packets that have to
be sent in this EC. The Transmission Control Unit controls
the transmission of the packets in those queues respect-
ing the corresponding phases in the EC, thus enforcing ap-
propriate trafic confinement of the different traffic classes.
Moreover, the Transmission Control Unit only transmits
messages from the asynchronous or NRT queues if the time
left within the respective windows is enough, thus prevent-
ing blocking of the Trigger Message and synchronous traf-
fic. To start the transmission of a packet, this unit asks the
Memory Unit to send its data to the MAC Interface Unit of
the respective output port. One particular case is the trans-
mission of the Trigger Message, which is sent directly to
all MAC Interface Units (broadcast), at the beginning of
each EC, as determined by the Synchronization Unit in a
blocking-free fashion thus with high precision. The Syn-
chronization Unit controls the EC timing and requests EC-
Schedules (Trigger Messages) from the Master Unit.

4.3. Hardware Implementation - Experimental
Results

In order to validate the main features of the FTT-enabled
switch we developed an initial prototype capable of enforc-
ing traffic classification, confinement and temporal valida-
tion, as well as fast forwarding and blocking-free trans-
mission [13]. That prototype basically corresponded to the
Switching Module that we now propose in the current ar-
chitecture, since all traffic scheduling features were still
missing. Therefore, the performance figures therein re-
ferred also hold for our current switching module, partic-
ularly the traffic confinement capability (Figures 6 and 7)
and the blocking-free transmission of the Trigger Message
even in the presence of strong load. In the former case, the
figures show the histograms obtained at the switch ingress
(inter-arrival times) and egress (relative delay inside the
EC) of 10000 NRT packets with 1000B payload each, us-
ing approximately 30% of the links bandwidth. In the lat-
ter case, the TM was transmitted with a period of 1.000ms
with a standard deviation of 138ns and maximum deviation
below +/- 200ns.

4.4. Software Implementation

The Master Unit implements a set of complex opera-
tions, including the SRDB, the QoS Manager, the Admis-
sion Control and the Scheduler. From an implementation
point of view, these operations are algorithmically com-

Figure 6. Inter-arrival time of NRT packets at the
switch ingress.

Figure 7. Transmission times of NRT packets at the
switch egress with respect to the TM (difference be-
tween the transmission timestamps of the packet and
the previous TM.

plex and make extensive use of dynamic lists, which are
more efficiently implemented in software. Moreover, these
operations basically correspond to the functionality of the
Master in the FTT-SE protocol [10], which is a fully soft-
ware implemented version of the protocol that works over
COTS Ethernet switches.

Therefore, in order to re-use the FTT-SE Master as the
Master Unit, the Master Interface was designed to provide
the necessary standard interfaces that FTT-SE uses, namely
one Ethernet port. This port, however, is dedicated to the
communication with the Master Unit and does not integrate
the communication ports managed by the Switching Mod-
ule. This allows incorporating the FTT-SE Master practi-
cally as is, with substantial gains in development time. The
FTT-SE Master is then an autonomous component that can
be connected to a COTS switch or to the Switching Module
herein proposed, providing two different levels of service
concerning traffic filtering, confinement, policing, tempo-
ral protection and compatibility with non-FTT nodes. This
is a highly flexible and efficient solution.

When comparing with the other possibility of using an
embedded microprocessor inside the FPGA to run the Mas-
ter code, the proposed solution is more expensive given
the use of an external computer, and possibly less reliable



given the larger number of components and connections.
However, it has the advantage of maximizing the FPGA
resources available for communication ports and it allows
sharing the FTT Master between the full software FTT-SE
version and the one based on the enhanced switch.

One aspect that had to be worked out was the source of
the EC clocking. While in the full software version of FTT-
SE it is the Master that controls the EC timings directly,
in this case, using the enhanced switch herein proposed
the EC timing is controlled by the switch Synchronization
Unit. This unit sends requests to the Master Unit that trig-
gers the scheduling activity leading to the generation of the
Trigger Messages containing the respective EC-Schedules
that are then used by the Switching Module.

This aspect is also relevant when considering multi-
switch topologies. In such case, only one Master is used
and the source of the EC clocking must be unique, too.
Therefore, when using the enhanced switch, it must be the
only one of such kind, with all others being COTS switches.
For larger networks it is advisable to plan different syn-
chronization domains, each with its own enhanced switch,
connected by means of gateways that allow decoupling the
different synchronizations.

Concerning the internal components of the Master Unit,
the System Requirements Database (SRDB) deserves a
special reference. It is a central repository for all the in-
formation related to traffic management, namely the mes-
sages attributes for both synchronous and asynchronous
traffic, e.g., period/minimum inter-arrival time, length in
bytes, priority if applicable, deadline and offset if applica-
ble, plus information about the resources allocated to each
traffic class, e.g., phase durations and maximum amount of
buffer memory, and global configuration information, e.g.,
elementary cycle duration and bit rate.

The attributes in the SRDB can be updated on-line via
FTT requests that are identified by the Switching Module
and forwarded to the Master Unit. These requests can ask
for addition or removal of messages to/from the SRDB,
for example, in the course of on-line reconfiguration pro-
cedures, or even changing attributes of existing messages,
for example, in the course of dynamic QoS management.
In both cases, the FTT requests arriving at the Master Unit
are submitted to an Admission Control that guarantees that
there are resources enough to enforce the timeliness of the
real-time messages. When active, the Qos Manager adapts,
upon request, the attributes of a set of messages in order to
maximize a given figure of merit.

Finally, the Scheduler scans the SRDB on-line, every
EC, and builds the list of real-time messages that must be
produced in the following EC (EC-Schedule). This list
is incorporated into the Trigger Message and sent to the
Switching Module where it is buffered. The right transmis-
sion instant is defined by the Synchronization Unit, ensur-
ing a precise timing.

5. Conclusions and Future Work

The advent of switched Ethernet has opened new
perspectives for real-time communication over Ethernet.

However, a few problems subsist related with queue man-
agement policies, queue overflows and limited priority sup-
port. While several techniques were proposed to overcome
such difficulties, the use of standard Ethernet switches con-
straints the level of performance that may be achieved. On
the other hand, the growing availability of powerful pro-
grammable hardware devices and associated tools as well
as IP cores of communication components opens the way
to build customizable devices with properties that are better
tuned to specific application domains.

Therefore, following such trend we proposed recently
an FPGA-based enhanced Ethernet switch relying on the
Flexible Time-Triggered paradigm that enforces strict tem-
poral isolation of three traffic classes, provides seamless
integration of non-FTT nodes without causing any interfer-
ence on the periodic real-time traffic, also provides filter-
ing of unauthorized transmissions at the switch ingress and
generates a high precision time mark.

In this paper we presented an architecture for such en-
hanced switch that exploits the separation between the
packet switching activity and the FTT Master functional-
ity, the former being implemented in hardware (Switch-
ing Module) and the latter in software (Master Unit). This
also allowed reusing the Master of the fully software im-
plemented FTT-SE protocol with minor adjustments and
great benefits in modularity and development costs. The
paper also described the hardware implementation of the
Switching Module, with a focus on the synchronization is-
sues among the asynchronous units inside the switch.

On-going work addresses the full characterization of the
overheads incurred by the proposed architecture concern-
ing the interconnection between the Switching Module and
Master Unit to derive performance limits. Two other is-
sues will also be addressed, namely the adaptation of the
enhanced switch to allow the coexistance of several units
in the same synchronization domain and the replication of
the Master. The design of specific gateways for connecting
different synchronization domains will also be addressed.

6. Acknowledgments

The authors would like to thank Xilinx Inc. for the do-
nation of the Tri-mode Ethernet MAC soft IP core, as well
as ISE and ChipScope Pro FPGA design tools.

References

[1] Automation.com magazine.
http://www.automation.com/content/softing-uses-altera-
fpga-for-real-time-ethernet.

[2] Ethernet powerlink - online information.
http://www.ethernet-powerlink.org/.

[3] Open DeviceNet Vendors Association. Ethernet/ip.
http://www.odva.org/.

[4] J. Feld. Profinet - scalable factory communication for all
applications. In 2004 IEEE International Workshop on Fac-
tory Communication Systems, pages 33–38, 2004.

[5] P. Ferrari, A. Flammini, D.Marioli, and A. Taroni. Experi-
mental evaluation of profinet performance. In 2004 IEEE In-



ternational Workshop on Factory Communication Systems,
pages 331–334, 2004.

[6] EtherCAT Technology Group. Ethercat - ethernet for control
automation technology. http://www.ethercat.org, December
2007.

[7] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kaller-
dahl. Switched real-time ethernet with earliest deadline first
scheduling - protocols and traffic handling. In WPDRTS’02
- The 10th International Workshop on Parallel and Dis-
tributed Real-Time Systems, page 308, Florida - USA, April
2002. IEEE Computer Society.

[8] J. Loeser and H. Haertig. Using switched ethernet for hard
real-time communication. In PARELEC’04 - International
Conference on Parallel Computing in Electrical Engineer-
ing, pages 349–353, Dresden - Germany, September 2004.
IEEE Computer Society.

[9] R. Marau, P. Pedreiras, and L. Almeida. Enhanced eth-
ernet switching for flexible hard real-time communication.
http://www.csem.ch/events/RTN06/RTN06.html, jul 2006.
RTN 2006, 5th Workshop on Real-Time Networks, Dres-
den, Germany.

[10] R. Marau, P. Pedreiras, and L. Almeida. Enhancing real-
time communication over cots ethernet switches. In WFCS
06 - The 6th IEEE Workshop on Factory Communication
Systems, Turin - Italy, June 2006. IEEE Computer Society.

[11] M. Plankensteiner. Ttethernet enabes the use of ethernet net-
works in all applications. Embedded Control Europe, pages
12–14, 2008.

[12] PROFInet. Real-time profinet irt.
http://www.profibus.com/pn, December 2007.

[13] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and
L. Almeida. Designing a costumized ethernet switch for
safe hard real-time communication. In 2008 IEEE Interna-
tional Workshop on Factory Communication Systems, pages
169 – 177. IEEE Computer Society, May 2008.

[14] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz.
A time-triggered ethernet (tte) switch. In DATE’06 - Design
Automation and Test in Europe, pages 794–799, Munich -
Germany, March 2006. ACM.

[15] TTTech. Ttethernet. http://www.tttech.com/solutions/ttethernet/,
November 2008.


