
Architectural Solutions for Server Scheduling Communication within Ethernet
Switches

R. Santos, A. Vieira, R. Marau, P. Pedreiras, A. Oliveira
DETI / IEETA

Universidade de Aveiro, Portugal
{rsantos, alexandrevieira, marau, pbrp, arnaldo}@ua.pt

Luis Almeida
IEETA - DEEC / University of Porto

4200-465 Porto, Portugal
lda@fe.up.pt

Abstract

The information exchanged in Network Embedded Sys-
tems (NES) is steadily increasing both in terms of quan-
tity, size and complexity. For instance, applications com-
prising data originated in simple 10 bit ADCs side-by-side
with multi-kilobyte variable bit-rate multimedia traffic are,
nowadays, becoming a commonplace. Moreover, many
NES are frequently subject to real-time constraints and thus
the associated information exchanges are subject to time-
liness requirements. However, existing real-time Ethernet
protocols have difficulties in handling these streams effi-
ciently, particularly in what regards the arbitrary arrival
patterns and different QoS requirements.

To overcome these limitations, the authors proposed re-
cently the integration of server-based traffic scheduling
concepts within a customizable Ethernet switch, called
FTT-enabled switch. The server scheduling unit can be
placed in different points of the FTT-enabled switch archi-
tecture. The particular placement chosen has a noticeable
impact in terms of server responsiveness, flexibility, hard-
ware complexity and global system schedulability.

This paper presents a qualitative comparison about the
different architectural solutions and presents a prototype
implementation of the hardware-based architecture. Ex-
tensive experimental results are also included, showing the
correctness of the server operation both in terms of band-
width guarantees, traffic isolation and latency bounds.

1. Introduction

Switched Ethernet architectures present attractive fea-
tures such as large bandwidth, cheap network controllers,
high availability, easy integration with Internet and a clear
path of evolution. These features are fostering the expan-
sion of switched Ethernet architectures to new application
areas such as high-speed servoing, target tracking in mil-
itary systems or even the control of electrical protection
systems in substations. However, COTS Ethernet switches
are not designed to support the timeliness and safety re-
quirements found in many of the application areas afore-
mentioned due to aspects like blocking caused by long non-
preemptive frames, lack of protection against errors in time
domain, a limited number of priorities and possible mem-
ory overflows.

To address these limitations, diverse Real-Time Ether-
net (RTE) protocols have been developed (e.g. [1], [2],
[3], [4] [5] [6], [7]). However, most of the RTE protocols
share a common difficulty in efficiently handling together
real-time messages with diverse arrival patterns, such as
periodic and aperiodic, treating them in different ways, fre-
quently with static resource allocation for each case.

Server-oriented architectures are recognized as an effec-
tive means to enable such kind of communication resource
sharing [8].The current support for network partitions suf-
fers from limitations imposed by specific medium access
control and queues management policies within network
controllers, network devices and protocol stacks that do
not allow efficient server-based scheduling policies as those
developed for CPU scheduling. Moreover, network parti-
tions are typically static, as in TDMA-based approaches,
and do not adapt to variations in number of active compo-
nents in the system or in their requirements. Additionally,
the respect for network partitions is frequently delegated
to the end nodes that must execute a specific layer on top
of the general network interface, typically a traffic shaper,
which is a limitation for the integration of legacy systems
and other general purpose systems that do not originally
include such layer.

To overcome the limitations mentioned above, the au-
thors proposed previously the Server-SE protocol [9], in-
tegrating the FTT-SE [2] and Server-CAN [10] protocols,
the former providing a master/slave architecture that sup-
ports operational flexibility and the latter providing an in-
tegrated server-based traffic scheduling paradigm. Server-
SE provides a seamless integration of real-time and non-
real-time services, with strict timeliness guarantees to the
first class. Arbitrary server scheduling policies are sup-
ported including their hierarchical composition. Further-
more, the servers properties can be changed dynamically,

or environment, without compromising the timeliness of
the real-time services. The FTT-SE framework was com-
plemented recently with a costumized Ethernet switch [11]
that integrates the FTT master functionality and is capable
of traffic classification and policing at the input ports. This
latter feature allows confining the incoming traffic to re-
configurable time windows, whichever its type and arrival
pattern. This capability is not present in current real-time
Ethernet (RTE) protocols and is particularly well suited for
supporting open distributed real-time systems.

 * Work partially supported by the FCT project PTDC/EEA-
ACR/73307/2006 (HaRTES - Hard Real-Time Ethernet Switching)

*

The architecture of the FTT-enabled switch permits
placing the server scheduling unit in different places. More
specifically, the server scheduling can be carried out either
in software, under control of the FTT Master module, or
in hardware, operating complementary to the FTT Master
module. This design option has important consequences in
terms of responsiveness, flexibility, hardware complexity
and global system schedulability. This paper presents the
both architectural solutions, performs a qualitative compar-
ison of them regarding the merit figures before mentioned
and presents a prototype implementation of the hardware-
based approach. Extensive experimental results are also
included, showing the correctness of the server operation
both in terms of latency bounds, bandwidth guarantees,
traffic isolation and hierarchical server composition.

The remaining of the paper is organized as follows: Sec-
tion 2 presents a brief overview on the related work; Sec-
tion 3 presents a brief overview about server-based traffic
scheduling; Section 4 describes the implementation of soft-
ware and the hardware-based architecture and discussing
their advantages and disadvantages; Section 5 presents ex-
perimental results on the hardware implementation and, fi-
nally, Section 6 presents the conclusions.

2. Related Work

The nomenclature given to servers in the networking
domain is frequently different from the one used in CPU
scheduling. For example, a common server used in net-
working is the leaky bucket. This is a specific kind of a
general server category called traffic shapers [1], which
purpose is to limit the amount of traffic that a node can
submit to the network within a given time window, bound-
ing the node burstiness. These servers use techniques sim-
ilar to those used by CPU servers, based on capacity that is
eventually replenished. Many different replenishment poli-
cies are also possible, being the periodic replenishment as
with the Polling Server (PS) or the Deferrable Server (DS),
the most common ones. However, it is hard to categorize
these network servers similarly to the CPU servers because
networks seldom use clear fixed or dynamic priority traffic
management schemes. In fact, there is a large variability of
Medium Access Control (MAC) protocols, some of them
mixing different schemes such as round-robin scheduling,
first-come-first-served, multiple priority queues, etc.

Focusing on RTE protocols, some limited forms of
server-based traffic handling can be found. PROFINET
RT and IRT [6] present bi-phase periodic communica-
tion cycles, comprising a mandatory Real-Time (RT) phase
eventually followed by an optional non RT (NRT) phase.
The RT schedule is built off-line and downloaded to the
switch at configuration time. The protocol depends on a
custom switch to enforce the cyclic structure and traffic
confinement. The protocol operation can be regarded as
a polling server, devoted to the periodic traffic, composed
with a background server, dedicated to the NRT traffic. The
TTEthernet [7] switch is also based in a customized switch
that enforces a TDMA framework. When there is no RT
traffic, nodes can transmit arbitrary NRT data. Whenever a

TDMA slot is scheduled, the switch aborts current ongoing
NRT transmissions, if any, making sure that the communi-
cation medium is free for the RT transfer. The underlying
TDMA framework permits the existence of event slots thus,
globally, the operation of this protocol can be regarded as a
set of polling servers (off-line scheduled event slots) com-
bined with a background server that handles the NRT traf-
fic. Ethernet Powerlink [4]) also presents a TDMA scheme,
based on a cyclic bi-phase communication structure, with
one phase devoted to the isochronous traffic and the other to
aperiodic traffic. The protocol operation can be regarded as
the composition of two polling servers, one devoted to the
isochronous traffic and the other to the asynchronous traf-
fic. The protocol is based on a Master-Slave access control
scheme, thus servers are scheduled in software. Other pro-
tocols, such as [1], implement traffic shapers in the end
nodes, managed by suitable software modules, which be-
have similarly to a DS.

Due to infrastructural limitations, none of these proto-
cols supports arbitrary server policies nor their hierarchical
composition and dynamic adaptation or creation/removal,
features that are provided by the Server-SE implementation
described in this work.

3. FTT-Enabled Switch

The FTT-enabled switch is based on the Flexible Time-
Triggered (FTT) paradigm with the FTT master included
inside the switch (Master Module in Figure 1). The FTT
protocol defines three traffic classes: 1) periodic real-
time messages activated by the master (referred to as syn-
chronous since their transmission is synchronized with the
periodic traffic scheduler); 2) aperiodic or sporadic real-
time traffic, autonomously activated by the application
within each node, and 3) non real-time traffic. Classes 2
and 3 are referred to as asynchronous. The synchronous
and asynchronous traffic are transmitted within separate
windows with the former typically having priority over
the latter. The non real-time traffic is scheduled in back-
ground, within the asynchronous window. For the syn-
chronous traffic, a master/multi-slave transmission control
technique is used, according to which a master addresses
several slaves with a single poll message, considerably al-
leviating the protocol overhead when compared to the con-
ventional master-slave techniques. The communication is
organized in fixed duration slots called Elementary Cycles
(ECs). Each EC starts with one poll message sent by the
master, called Trigger Message (TM). The TM contains the
schedule for that particular EC. Only the messages that fit
within an EC are scheduled by the master, thus memory
overflows inside the switch are completely avoided for such
kind of traffic.

In short, the FTT-enabled Switch provides the following
advantages: 1) Online admission control, dynamic quality-
of-service management and arbitrary traffic scheduling
policies; 2) an increase in the system integrity since unau-
thorized real-time transmissions can be readily blocked at
the switch input ports, thus not interfering with the rest of
the system; 3) the asynchronous traffic is autonomously

Figure 1. FTT-enabled Ethernet switch.

triggered by the nodes; 4) a seamless integration of stan-
dard non-FTT-compliant nodes without jeopardizing the
real-time services.

4. Server scheduling integration analysis

The server scheduling in the FTT-enabled switch can be
carried either in software, under control of the FTT Mas-
ter module, or in hardware, operating complementary to
the FTT Master module. This design option results in dif-
ferentiated behaviors in terms of responsiveness, flexibil-
ity, hardware complexity and global system schedulabil-
ity. This section explores both these architectural design
options, showing its operation principles and presenting a
qualitative comparison among them.

4.1. Servers implemented in software, inside the
Master Module

Following a pure software-based approach, the server
scheduling can be carried out at the Master node. From
the logical operation point of view, this approach is es-
sentially equivalent to the Server-SE protocol [9]. The
servers are software entities that reside in the master node.
Each server has an associated memory block, organized as
a FIFO. The traffic arrives via input ports and is submit-
ted to the Classifier and Verifier Unit that classifies and
validates the received messages. Whenever a valid mes-
sage associated with a given server arrives, it is moved to
the respective FIFO. Once every cycle the switch posts the
Master about the status of the server FIFOS. Also once ev-
ery EC the scheduler builds the EC-schedule and generates
the trigger message, identifying the messages that should
be transmitted in the following EC. The switch intercepts
the EC-schedule and then forwards the messages associated
with the scheduled servers. This scheme shares essentially
the same properties as the Server-SE protocol, providing a
great flexibility, permitting the support of arbitrary server
schemes as well as its composition, combined with a tight
integration with the Master scheduling, admission control
and QoS management. However, as seen above, this ap-
proach still depends on a explicit signaling mechanism to
post the scheduler about the occurrence of server requests.

Additionally, the EC-schedule is built one EC in advance.
As illustrated in Figure 3, this whole process results in a
server latency between one and two ECs. Thus the server
latency is strongly dependent on the EC duration and can
be relatively large. This is the cost to pay for having the
servers scheduling carried out by the master scheduler in a
integrated fashion inside the Master Module.

Figure 2. FunctionalArchitecture.

Figure 3. Servers forwarding process.

4.2. Server scheduling implemented inside the
Switching Module

The server structures and their scheduling can also be
implemented in hardware, inside the Switching Module.
The servers are pre-configured and consequently their type
and number cannot be changed online. A more dynamic
architecture, permitting the dynamic creation and removal
of servers, would require online FPGA reconfiguration, a
subject that is outside of the scope of this paper. The ad-
mission of streams, namely the schedulability analysis and
QoS negotiation, continues to be performed inside the Mas-
ter Module. The negotiation procedure results are then in-
tercepted by the Switching Module and used to configure
the servers operational parameters.

Since the server scheduling is carried out independently
of the master scheduler, it is necessary to break the EC in
two sub-windows, one assigned to the master scheduler and
the other to the servers scheduler. Similarly to the soft-

ware approach, whenever a valid message associated with
a given server arrives, it is moved to the respective FIFO.
Whenever the server sub-window is reached, the switch
checks the server FIFOs, by priority order, and sends any
pending messages until either the FIFOs become empty or
the server sub-window finishes. This entire process is re-
peated every EC.

It is straightforward to concluded that, compared with
the software architecture, this solution presents a greater
reactivity. In the best case the latency is essentially the
message transmission time, added with the switching la-
tency, while in the worst case the message arrives at the
end of the server sub-window, and thus has to wait to the
beginning of the following server sub-window, which takes
less than one EC time. Furthermore, for simple schedul-
ing algorithms such as Rate Monotonic or Round-Robin,
the implementation is resource-efficient and fairly simple.
However, the hardware-based architecture compares nega-
tively to the software one in terms of flexibility. On the one
hand the number and type of servers is fixed, as mentioned
above. On the other hand, complex servers can require a
significant amount of hardware resources. Furthermore,
from the global schedulability point of view, the hardware-
supported servers also perform worse, since the master and
the server scheduler are separate entities, unaware of the
state of each other. For instance the master scheduler, when
scheduling periodic messages, does not know the state of
the servers. Thus, if the number of server requests is not
sufficient to fill in the respective sub-window, the master
scheduler is unable to reclaim that free space for schedul-
ing periodic messages, thus penalizing the global system
schedulability.

5. Experimental Results

The hardware-based server scheduling architecture was
deployed in a prototype implementation of a 4 port FTT-
enabled Ethernet switch architecture, following a similar
Hw/Sw co-design approach as proposed in [?]. The proto-
type switch implements the Switching Module in hardware,
using a NetFPGA board [12], integrating a Virtex-II Pro
XC2VP50 FPGA and using 51% of the board total slices,
with a maximum operation frequency of 126.20MHz. The
Master Module is implemented in software, running in an
independent CPU, connected to the FPGA by a dedicated
Ethernet link on Port 4.

To assess the correct operation of the servers, it was cre-
ated a configuration with an EC of 1ms, with the servers
sub-window using 42% of the EC. Inside the server sub-
window are created two sporadic servers, SS1 and SS2,
with a budget of 3200B and period 1ms each. In addition
it was also created a background server BS, to reclaim the
bandwidth left by the sporadic servers. A video stream is
simultaneously fed through servers SS1 and BS, while a
time-bounded constant load, simulating an UDP transac-
tion, is fed to SS2. The video stream has been analyzed
offline, and offers an average load of around 10Mbps, with
peaks that may reach 21.9Mbps. The load fed through SS2
is active from the instant t1=22 seconds to t2=58 seconds

and, when active, generates a constant load of 48.9Mbps.
A simple assessment of the load bandwidth submitted to
the servers permits concluding that when the video streams
experience peak activity the bandwidth is insufficient, lead-
ing to overloads. SS1 has the highest priority and thus the
video stream served by it should not be degraded during
overloads. The load traffic is served by a lower priority
SS2. Since the bandwidth allocated to SS1 and SS2 ex-
ceed the server sub-window capacity, during peak activity
on SS1, SS2 may also not be able to receive the full band-
width. Finally, the video stream fed through the BS is ex-
pected to experience a severe quality degradation when the
SS2 is active, since the BS has no guaranteed bandwidth.

Figure 4. Submitted and forwarded load difference

Figure 4 shows, for each server, the instantaneous in-
put and output traffic bandwidth. The first graph regards
the highest priority server SS1 and, in this case, the input
and output plots essentially overlap, meaning that the traffic
managed by this server is forwarded without a noticeable
delay. The second graph respects the video stream served
by the BS. Between the instants t1 and t2, corresponding
to the instants in which SS2 is active, it is possible to ob-
serve several sections in which the input and output traffic
plots deviate from each other. The sections in which the
input traffic plot is over the output traffic plot corresponds
to periods in which the bandwidth allocated to the server
is not enough to serve all the input traffic, potentially lead-
ing to packet losses. The switch has some buffer capac-
ity, so in some sections the input plot is below the output
plot, a situation that corresponds to the points in time where
bandwidth allocated to the server is enough to reduce the
amount of buffered messages. Finally, the last plot respects
the UDP simulated load. As expected, the input and output
traffic plots overlap most of the time, with occasional devi-
ations coincident with peaks in the video stream served by
SS1.

Figure 5 shows the input and output bandwidth of the
three servers between t=32s and t=45s. Here it possible
to observe the effect of the relative priority among servers.
When SS1 has bandwidth peaks it is possible to observe a
corresponding degradation on the BS, while the load traffic

Figure 5. Submitted and forwarded load zoom

served by SS2 is essentially unaffected. This behavior is
according with the expectations. SS1 was dimensioned to
nearly fit the video stream peak bandwidth, and thus this
stream is essentially unaffected by the switch. However,
the bandwidth allocated to SS1 and SS2 exceeds the band-
width of the server sub-window, so when SS1 uses the full
bandwidth SS2 capacity is penalized. Finally, the BS re-
ceives the bandwidth left over by SS1 and SS2, thus being
subject to an higher bandwidth degradation during peak ac-
tivity of SS1 and SS2.

Table 1 depicts, for each server, the total number of
packets transmitted and effectively forwarded by the switch
during the experiment. The numeric results confirm the
qualitative impressions above enunciated. The highest pri-
ority server SS1 experiences a marginal packet loss, while
server SS2 experiences a slightly high packet loss ratio.
This was expected due to the high bandwidth peaks of the
video stream, leading to occasional situations in which the
server sub-window capacity is exceeded. Finally, the BS
experiences the worst packet loss ration, as expected, since
it is the lowest priority server, without any type of guaran-
tees.

SS1 SS2
Packets submitted stuff stuff
Packets forwarded stuff stuff

Table 1. Number of packets submitted and allowed.

The switch latency was also assessed. For this purpose
is was used a configuration similar to the one previously
described, except that a single Sporadic Server (SS) re-
ceived the full server sub-window bandwidth. A packet
generator, served by the SS, sent periodically 1370B pack-
ets to the switch. The packet generator period was set with
a 0.4% offset relative to the EC length, to induce diverse
phasing conditions with respect to the server sub-window
occurrence. The switch was modified in order to return
the packet to the sender, thus enabling the packet generator
node to measure the round-trip delay. The obtained results
are depicted in Table 2

The best case happens when the message transmission
occurs during server sub-window, in which case is for-
warded immediately, suffering a round-trip delay due to

the packet transmission time added by the processing over-
head within the switch. The worst case situation occurs
when the transmission is issued right after the end of server
sub-window. In this case the round trip delay has to be
added up with the time to the beginning of the following
server sub-window. With a server sub-window of 42% of
the EC and an EC of 1ms, this waiting time is, in worst
case, 580ms. Observing Table 2 it is possible to see that
the maximum round-trip delay is approximately given by
the minimum value added up with 580ms. Thus, the ob-
tained results are consistent, indicating a correct operation
of the server scheduling.

Switch Latency
Minimum 227 µs
Maximum 807 µs

Average 397 µs

Table 2. Number of packets submitted and allowed.

6. Conclusions

Recently, the authors proposed an implementation of
Server-SE over a new customized Ethernet switch that fol-
lows the FTT paradigm. The FTT-enabled switch supports
a seamless integration of real-time and non-real-time ser-
vices, copes with arbitrary traffic arrival patterns, allows
arbitrary servers as well as their composition, and supports
their dynamic creation and adaption. This paper presents
preliminary work on the analysis of the different possibil-
ities of implementation of the server scheduling, and as-
sociated tradeoffs, namely in what regards server respon-
siveness, flexibility, hardware complexity and global sys-
tem schedulability. This paper also includes a prototype
implementation of the hardware-based architecture and its
experimental assessment. The experimental results show
the feasibility and correctness of the implementation.

References

[1] Loeser, J. and Haertig, H. Low-Latency Hard Real-Time
Communication over Switched Ethernet. In ECRTS ’04:
Proceedings of the 16th Euromicro Conference on Real-
Time Systems, pages 13–22, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] R. Marau, P. Pedreiras, and L. Almeida. Enhancing Real-
Time Communication over COTS Ethernet Switches. In
WFCS 06 - The 6th IEEE Workshop on Factory Commu-
nication Systems, Turin - Italy, June 2006. IEEE Computer
Society.

[3] EtherCAT Technology Group. EtherCAT - Ethernet for
Control Automation Technology. http://www.ethercat.org,
December 2007.

[4] Ethernet Powerlink - online information.
http://www.ethernet-powerlink.org/.

[5] Open DeviceNet Vendors Association. Ethernet/IP.
http://www.odva.org/.

[6] PROFInet. Real-Time PROFInet IRT.
http://www.profibus.com/pn, December 2007.

[7] TTTech. TTEthernet. http://www.tttech.com/solutions/ttethernet/,
November 2008.

[8] Shin, Insik and Lee, Insup. Compositional real-time
scheduling framework with periodic model. ACM Trans.
Embed. Comput. Syst., 7(3):1–39, 2008.

[9] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras,
L. Almeida, and T. Nolte. Server-based Real-Time Commu-
nications on Switched Ethernet. In CRTS 2008: First Inter-
national Workshop on Compositional Theory and Technol-
ogy for Real-Time Embedded Systems, Barcelona - Spain,
2008. .

[10] T. Nolte. Share-Driven Scheduling of Embedded Networks.
PhD thesis, Department of Computer and Science and Elec-
tronics, Mälardalen University, Sweden, May 2006.

[11] R. Santos, R. Marau, A. Oliveira, P. Pedreiras, and
L. Almeida. Designing a Costumized Ethernet Switch for
Safe Hard Real-Time Communication. In 2008 IEEE In-
ternational Workshop on Factory Communication Systems,
pages 169 – 177. IEEE Computer Society, May 2008.

[12] NetFPGA. http://www.netfpga.org/, May 2009.

