HaRTES Meeting January 28, 2010, Aveiro, Portugal

Enhanced Ethernet Switching Technology for Adaptive Hard Real-Time Applications

Rui Santos, <u>rsantos@ua.pt</u>, UA

SUMMARY

MOTIVATION

Switched Ethernet became common in

real-time communications

Some interesting properties

- Large bandwidth
- Cheap network controllers
- Micro-segmentation
 - Collisions are eliminated
- Multiple parallel forwarding paths
- High availability

But there are still limitations

- FIFO queues
- Limited number of priorities
- Memory overflows

SOLUTIONS

Commercial Of-The-Shelf Ethernet Switches

- Limiting the generated traffic by the application design
- Traffic shaping
- Master-Slave protocols (FTT-SE, ...)

Customized Ethernert Switches

- TTEthernet o Static pre-defined configuration
- Profinet-IRT o Online admission control is not generally available
 - Miss on-line adaptation
- FTT-Enabled Switch (our solution)

Trigger message

FTT-ENABLED SWITCH (MECHANISM)

Master-slave transmission control technique

Communication occurs in fixed slots
 (Elementary Cycles – Ecs)

ECs are organized in synchronous and asynchronous windows

 Supports synchronous, asynchronous and non real-time traffic, with strict temporal isolation

FTT master

COTS switch

 The ECs start with a Trigger Message (TM) sent by the Master (switch), that contains the schedule for each EC

FTT-ENABLED SWITCH (PROPERTIES)

- Traffic scheduling and management
- Old Global traffic coordination in a common timeline
- Old Supports online admission control and dynamic QoS management
- Old Allows arbitrary traffic scheduling policies
 - Traffic classification, confinement and policing
- New Seamless integration of standard non-FTT-compliant nodes without jeopardizing the real-time services
- New Asynchronous traffic is autonomously triggered by the nodes
- New Unauthorized transmissions can be readily blocked at the switch input ports, thus not interfering with the rest of the system

How can we implement that? FTT-Enabled Switch (Architecture)

FTT-ENABLED SWITCH (IMPLEMENTATION)

Switching Module

Implemented in hardware

Master Module

- Implemented in FPGA embedded processor (Syntesizable or Hardwire)
- Utilization of a CPU –
 communication with the FPGA
 is carried out by the
 conventional interface
 (Ethernet, USB, PCI, ...)

FTT-ENABLED SWITCH (IMPLEMENTATION)

FTT-ENABLED SWITCH (EXPERIMENTAL RESULTS) TRAFFIC CONFINEMENT

FTT-ENABLED SWITCH (EXPERIMENTAL RESULTS) REGULARITY OF THE TM

o Measures:

- $T_TM_{avg} = 1,000ms$
- $T_TM_{max} = 1,0003ms$
- $T_TM_{min} = 0.99998ms$
- STD_TM = 138ns

Jitter purely from the switch 📶

SERVER-BASED TRAFFIC SCHEDULING

Motivation

- Address the growing NES requirements to:
 - support streams with arbitrary arrival patterns
 - o provide QoS guarantees .

Solution

 We propose to integrate CPU based server policy in the FTT-Enabled Switch

- Providing hierarchical composition, reconfigurability and adaptability
- Online creation, deletion and adaptation of servers
 January 28, 2010, Aveiro, Portugal

SERVER-BASED TRAFFIC SCHEDULING (INTEGRATION)

First Level

- SW Polling Server
- AW Polling Server or a Deferrable Server

Second Level

Manages the sporadic and the NRT traffic inside the AW

Third Level

Implements specific servers, virtual channels

SERVER-BASED TRAFFIC SCHEDULING (IMPLEMENTATION)

- Servers implemented in Hardware (Switching Module)
- High reactivity
- Less flexibility (the number of the servers is fixed)
- Complex server scheduling methods can require a significant amount of hardware resources.
- Servers implemented in Software (Master Module)
- High flexibility
- The server latency is relatively large

SERVER-BASED TRAFFIC SCHEDULING (EXPERIMENTAL RESULTS)

- Elemantary Cycle = 1ms; Asynchronous Window = 42%
- SS1, SS2 sporadic servers with C=3200B and T=1ms
- BS backgound server uses the remaining bandwidth

SERVER-BASED TRAFFIC SCHEDULING (EXPERIMENTAL RESULTS)

THE SAME EXPERIMENT WITH A NORMAL SWITCH!

FTT-Enabled Switch (Multiple Switches)

Problem

 How to create a network with multiple switches, where the communication is based on the FTT-Enabled Switch (HaRTES)?

Solutions

- Network with one FTT-Enabled Switch and multiple COTS switches
- Network with multiple FTT-Enabled Switches

FTT-ENABLED SWITCH (MULTIPLE SWITCHES)

 Network with one FTT-Enabled Switch and multiple COTS switches

- Properties
 - Trigger Messages are generated by FTT-Enabled Switch and disseminated by the others switches
- Advantages and Disadvantages
 - √o Solution compatible with common networks
- Oo COTS switches don't perform traffic policing
- Oo The Trigger Message latency can generate problems of synchronization

FTT-ENABLED SWITCH (MULTIPLE SWITCHES)

 Network with multiple a FTT-Enabled Switches

Properties

 Each FTT-Enabled Switch creates its own synchronization domain

- It needs a gateway to interconnect different synchronization domains
- Gateway can be avoided if FTT-Enabled Switches are slaves to each other
- Advantages and Disadvantages
 - √o Whole network is covered by the traffic policing

Gateway

FTT-ENABLED SWITCH (CURRENT STATUS)

HaRTES/B

Basic switching
 Executed

HaRTES/S

• Error detection Partially executed

Traffic policing

o HaRTES/Q

Dynamic QoS management Partially executed capabilities

CONCLUSIONS

- The growing availability of FPGAs, associated tools and communication IP cores opens the way to build customizable devices with properties that are tuned to specific application domains
- We propose an enhanced Ethernet switch that:
 - Provides seamless integration of any (kind of) nodes without causing any interference
 - Provides filtering of unauthorized transmissions
 - Allows arbitrary synchronous traffic scheduling policies
 - Allows arbitrary server scheduling and hierarchical composition
 - Provides dynamic creation and adaptation of servers

ON GOING AND FUTURE WORK

- Finish the proposed work in the project
- Study and integrate multiple switch architecture
 - Adapt the enhanced switch to allow integration in architectures with multiple synchronization domains
- Replicate the Master
- Study over the schedulability analysis of the server-based traffic scheduling

THANK YOU